C. B. Rao, D. C. Rao, D. C. Babu, Y. Venkateswarlu
SHORT COMMUNICATION
After completion of the reaction, the reaction mixture was dis-
solved in DCM (5 mL) and washed with distilled water. The or-
ganic layer was dried with Na2SO4, and the solvent was evaporated
under vacuum. Column chromatography afforded product 3a as a
pale yellowish oil in 96% yield. 1H NMR (300 MHz, CDCl3,
25 °C): δ = 7.16 (m, 4 H), 5.48 (m, 1 H), 3.27 (dd, J = 6.7, 16.6 Hz,
2 H), 2.95 (dd, J = 3.0, 16.6 Hz, 2 H), 2.00 (s, 3 H) ppm. 13C NMR
(300 MHz, CDCl3, 25 °C): δ = 171.4, 140.5 (2 C), 126.8 (2 C), 124.5
Claisen condensation. Because of their strong oxophilicity,
variable valency, and strong Lewis acidity, iron(III) salts
catalyze the reaction by involving a six-membered cyclic
transition state (Scheme 5).
(2 C), 75.4, 39.8 (2 C), 21.6 ppm. IR: ν = 1734.8 cm–1. MS (ESI):
˜
m/z = 199 [M + 23].
Supporting Information (see also the footnote on the first page of
this article): General information and procedures, characterization
data of the prepared compounds.
Acknowledgments
The authors are thankful to the Council of Scientific and Industrial
Research (CSIR), New Delhi, for financial support and to the Di-
rector, IICT, for his constant encouragement.
Scheme 5. Proposed mechanism for the formation of ester.[11a]
In Scheme 6, it is evident that the benzylic carbocation
(in isomer X) is more stable and readily available for a
longer period of time than the aliphatic carbocation (in iso-
mer Y), which facilitates regioselective nucleophilic attack
predominantly on the carbonyl group next to the benzyl
group rather than the non-benzylic carbonyl group.
[1] J. Otera (Ed.), Esterification, Wiley-VCH, Weinheim, 2003.
[2] a) T. W. Greene, P. G. M. Wuts in Protective Groups in Organic
Synthesis, 3rd ed., John Wiley & Sons, New York, 1999, pp.
369–453; b) G. Benz in Comprehensive Organic Synthesis (Eds.:
B. M. Trost, I. Fleming), Pergamon, Oxford, 1991, vol. 6, pp.
323–380.
[3] a) I. Dhimitruka, J. SantaLucia, Org. Lett. 2006, 8, 47–50; b)
R. Moumne, S. Lavielle, P. Karoyan, J. Org. Chem. 2006, 71,
3332–3334; c) S. Velusamy, S. Borpuzari, T. Punniyamurthy,
Tetrahedron 2005, 61, 2011–2015; d) C. T. Chen, Y. S. Munot,
J. Org. Chem. 2005, 70, 8625–8627.
[4] a) K. Ishihara, S. Ohara, H. Yamamoto, Science 2000, 290,
1140–1142; b) A. G. M. Barrett, D. C. Braddock, Chem. Com-
mun. 1997, 351–352; c) K. Ishihara, M. Kubota, H. Kurihara,
H. Yamamoto, J. Org. Chem. 1996, 61, 4560–4567.
[5] a) T. S. Reddy, M. Narasimhulu, N. Suryakiran, K. C. Mahesh,
K. Ashalatha, Y. Venkateswarlu, Tetrahedron Lett. 2006, 47,
6825–6829; b) G. Bartoli, M. Bosco, A. Carlone, R. Dalpozzo,
E. Marcantoni, P. Melchiorre, L. Sambri, Synthesis 2007,
3489–3496; c) A. Orita, C. Tanahashi, A. Kakuda, J. Otera,
J. Org. Chem. 2001, 66, 8926–8934; d) V. R. Choudhary, K.
Shudiram Mantri, K. J. Suman, Catal. Commun. 2001, 2, 57–
61; e) J. H. Sun, C. A. Teleha, J. S. Yan, J. D. Rodgers, D. A.
Nugiel, J. Org. Chem. 1997, 62, 5627–5629; f) K. Ishihara, M.
Kubota, H. Kurihara, H. Yamamoto, J. Org. Chem. 1996, 61,
4560–4567.
[6] a) I. Dhimitruka, J. SantaLucia, Org. Lett. 2006, 8, 47 50; b)
Q. Guo, T. Miyaji, R. Hara, B. Shen, T. Takahashi, Tetrahedron
2002, 58, 7327–7334; c) C. Mc Nicholas, T. J. Simpson, N. J.
Willett, Tetrahedron Lett. 1996, 37, 8053–8056; d) T. Oriyama,
Y. Hori, K. Imai, R. Sasaki, Tetrahedron Lett. 1996, 37, 8543–
8546.
[7] a) N. Remme, K. Koschek, C. Schneider, Synlett 2007, 491–
493; b) R. Singh, R. M. Kissling, M. A. Letellier, S. P. Nolan,
J. Org. Chem. 2004, 69, 209–212; c) K. V. N. S. Srinivas, I.
Mahender, B. Das, Synthesis 2003, 2390–2394; d) S. P. Chavan,
R. R. Kale, K. Shivasankar, S. I. Chandake, S. B. Benjamin,
Synthesis 2003, 2695–2698.
[8] a) M. G. Stanton, C. B. Allen, R. M. Kissling, A. L. Lincoln,
M. R. Gagne, J. Am. Chem. Soc. 1998, 120, 5981–5989; b)
M. G. Stanton, M. R. Gagne, J. Am. Chem. Soc. 1997, 119,
5075–5076; c) T. Okano, Y. Hayashizaki, J. Kiji, Bull. Chem.
Soc. Jpn. 1993, 66, 1863–1865.
Scheme 6. Proposed mechanism for the possibility of substrate re-
gioselectivity.
Conclusions
In conclusion, we have developed an iron-catalyzed syn-
thesis of esters by treating 1,3-dicarbonyl compounds with
alcohols. These reactions proceed by nucleophilic attack of
the alcohol at one of the carbonyl groups of the 1,3-dike-
tone followed by carbon–carbon bond cleavage, which oc-
curs through a six-membered cyclic transition state in a
retro-Claisen condensation manner. Water, secondary
amines, and silyl ethers can also be used as nucleophiles.
We observed regioselective esterification with the use of the
same protocol.
Experimental Section
General Esterification Procedure: The 1,3-diketone (1.0 mmol) was
added to the hydroxy compound (1.0 mmol) in a 10-mL round-
bottomed flask, followed by the addition of FeCl3 (10 mol-%) un-
der solvent-free and closed-vessel conditions. The reaction mixture
was stirred for 16 h at 80 °C. The reaction was monitored by TLC.
[9] a) X.-F. Wu, C. Darcel, Eur. J. Org. Chem. 2009, 1144–1147;
b) W. J. Yoo, C. J. Li, Tetrahedron Lett. 2007, 48, 1033–1035;
2858
www.eurjoc.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2010, 2855–2859