3022
J. M. Khurana et al. / Tetrahedron Letters 53 (2012) 3018–3022
Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.;
Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347; (c) Terrett, N. K.; Bell, A.
S.; Brown, D.; Ellis, P. Bioorg. Med. Chem. Lett. 1996, 6, 1819; (d) Elguero, J. In
Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E.
F. V., Eds.; Pergamon Elsever Science: Oxford, 1996; Vol. 6, p 1; (e) Singh, S. K.;
Reddy, P. G.; Rao, K. S.; Lohray, B. B.; Misra, P.; Rajjak, S. A.; Rao, Y. K.;
Venkatewarlu, A. Bioorg. Med. Chem. Lett. 2004, 14, 499.
6a–d) in good yields. The formation of pyrido[2,3-d]pyrimidines is
compatible with the literature18 report which has stated that
the dihydro[2,3-d]pyrimidine-2,4-diones are unstable to air and
oxidized to corresponding aromatized product (Scheme 2).
Furthermore to explore the generality and diversity of the protocol,
we extended the present methodology for the condensation of 3-
methyl-1-phenyl-1H-pyrazol-5-amine, aromatic aldehydes, and
cyclic diketones like cyclohexane-1,3-dione (1b), indane-1,3-dione
(1d), cyclopentane-1,3-dione (1e), and 2-hydroxy-1,4-naphthoqui-
none (1f) using InCl3 as catalyst in water under reflux (Scheme 3).
All the reactions proceeded smoothly and gave 4-aryl-3-methyl-1-
phenyl-1,4,6,7,8,9-hexahydropyrazolo[3,4-b]quinolin-5-ones (Table
4, entries 7a–b) as the sole product with cyclohexane-1,3-dione
(1b) and the fully aromatized product that is 4-aryl-3-methyl-1-
phenyl-1H-indeno[1,2-b]pyrazolo[4,3-e]pyridin-5-ones (Table 4,
entries 8a–c), novel 4-aryl-3-methyl-1-phenyl-6,7-dihydro cyclo-
penta[b]pyrazolo[4,3-e]pyridine-5(1H)-ones (Table 4, entries 9a-b),
and 4-aryl-3-methyl-1-phenyl-1H-benzo[h] pyrazolo[3,4-b]quino-
line-5,10-di-ones (Table 4, entries 10a–f) with indane-1,3-dione (1d),
cyclopentane-1,3-dione (1e), and 2-hydroxy-1,4-naphthoquinone
(1f) respectively in good yields.
Apart from the greener reaction conditions, the products could
be isolated by simple filtration in excellent yields. The possibility
to recover and recycle InCl3 also offers another significant advan-
tage. Because InCl3 is soluble in reaction medium (water) and the
products are insoluble in water, the recovered filtrate containing
the catalyst could be recycled. Studies using 6-amino-1,3-dimeth-
yluracil, 4-chlorobenzaldehyde, and dimedone (1a) as model sub-
strates showed that the recovered filtrate could be successively
recycled in subsequent reactions without any significant decrease
of yield of 3a. A marginal loss of the yield was observed in first
two runs (91% and 89%), while in third and fourth run the yield
dropped to 75% and 65%, respectively.
7. Huang, S.; Lin, R.; Yu, Y.; Lu, Y.; Connolly, P. J.; Chiu, G.; Li, S.; Emanuel, S. L.;
Middleton, S. A. Bioorg. Med. Chem. Lett. 2007, 17, 1243.
8. Saggar, S. A.; Sisko, J. T.; Tucker, T. J.; Tynebor, R. M.; Su, D. S.; Anthony, N. J. U.S.
Patent Appl. US 2,007,021,442, 2007.
9. Zhang, P.; Pennell, A. M. K.; Wright, J. J. K.; Chen, W.; Leleti, M. R.; Li, Y.; Li, L.;
Xu, Y. PCT Int. Appl. WO 2007002293, Chemocentryx, USA.
10. Chiu, G.; Li, S.; Connolly, P. J.; Middleton, S. A.; Emanuel, S. L.; Huang, S.; Lin, R.;
Lu, Y. PCT Int. Appl. WO 2006130673, Janssen Pharmaceutica, N.V., Belgium.
11. Feurer, A.; Luithle, J.; Wirtz, S.; Koenig, G.; Stasch, J.; Stahl, E.; Schreiber, R.;
Wunder, F.; Lang, D. PCT Int. Appl. WO 2004009589, Bayer Healthcare AG,
Germany.
12. Rosowsky, A.; Mota, C. E.; Queener, S. F. J. Heterocycl. Chem. 1995, 32, 335.
13. Nargund, L. V. G.; Reddy, Y. S. R.; Jose, R. Indian Drugs 1991, 29, 45.
14. Thompson, A. M.; Bridges, A. J.; Fry, D. W.; Kraker, A. J.; Denny, W. A. J. Med.
Chem. 1995, 38, 3780.
15. Donkor, I. O.; Klien, C. L.; Liang, L.; Zhu, N.; Bradley, E.; Clark, A. M. J. Pharm. Sci.
1995, 84, 661.
16. Pastor, A.; Alajarin, R.; Vaquero, J. J.; Alvarez-Builla, J.; Faude Casa-Juana, M.;
Alvarez-Builla, J.; Sunkel, C.; Priego, J. G.; Fonseca, I.; Sanz-Aparicio, J.
Tetrahedron 1994, 50, 8085.
17. Kolla, V. E.; D-Eyanov, A. B.; Nazmedinov, F. Y.; Kashina, Z. N.; Rovosekova, L. P.
Khim. Farm. Zh. 1991, 27, 29.
18. Satti, N. K.; Suri, K. A.; Sun, O. P.; Kapil, A. Indian J. Chem., Sect B 1993, 32B, 978.
19. Bystryakove, I. D.; Burova, I. A.; Chelysheva, G. M.; Zhilinkova, S. V.; Smirnova,
N. M.; Safonova, T. S.; Safonova, T. S. Khim. Farm. Zh. 1991, 25, 31.
20. Deyanov, A. B.; Niyazov, R. K.; Nazmetdinov, F. Y.; Syropyatov, B. Y.; Kolla, V. E.;
Konshin, M. E. Khim. Farm. Zh. 1991, 25, 26.
21. Monge, A.; Martinez-Merino, V.; Sanmartin, C.; Fernamdez, F. J.; Ochoa, M. C.;
Berllver, C.; Artigas, P.; Fernandez-Alvarez, E. Eur. J. Med. Chem. 1989, 24, 209.
22. Saladowwska, H.; Bartoszko-Malik, A.; Zawisza, T. Farmacol 1990, 45, 101.
23. Shi, D.-Q.; Ni, S.-N.; Yang, F.; Shi, J.-W.; Dou, G.-L.; Li, X.-Y.; Wang, X.-S.; Ji, S.-J. J.
Heterocycl. Chem. 2008, 45, 963.
24. (a) Hua, G.-P.; Xu, J.-N.; Tu, S.-J.; Wang, Q.; Zhang, J.-P.; Zhu, X.-T.; Li, T.-J.; Zhu,
S.-L.; Zhang, X.-J. Chin. J. Org. Chem. 2005, 25, 1610; (b) Wu, L.-Q.; Dong, R.-Y.;
Yang, C.-G.; Yan, F.-L. J. Chin. Chem. Soc. 2010, 57, 19; (c) Shi, C.-L.; Shi, D.-Q.;
Kim, S. H.; Huang, Z.-B.; Ji, S.-J.; Ji, M. Tetrahedron 2008, 64, 2425.
25. Ramesh, E.; Raghunathan, R. Tetrahedron Lett. 2008, 49, 2583; (b) Kumar, V.;
Chimni, S. S.; Kumar, S. Tetrahedron Lett. 2004, 45, 3409; (c) Kumar, S.; Kumar,
V.; Chimni, S. S. Tetrahedron Lett. 2003, 44, 2101; (d) Nandi, G. C.; Samai, S.;
Singh, M. S. Synlett 2010, 1133.
26. (a) Khurana, J. M.; Kumar, S. Tetrahedron Lett. 2009, 50, 4125; (b) Khurana, J. M.;
Magoo, D. Tetrahedron Lett. 2009, 50, 4777; (c) Khurana, J. M.; Magoo, D.
Tetrahedron Lett. 2009, 50, 7300; (d) Khurana, J. M.; Nand, B.; Saluja, P.
Tetrahedron 2010, 66, 5637; (e) Khurana, J. M.; Nand, B.; Kumar, S. Synth.
Commun. 2011, 41, 405.
In conclusion, we have described a facile, environmentally benign
one-pot and three-component method for the synthesis of pyrimi-
dine/pyrazole annulated heterocyclic systems using 20 mol % InCl3
as catalyst in water. The advantages of this method include operational
simplicity, high yields, and the reusability of the reaction media
Acknowledgments
27. Crystallographic data for compound 2a in this paper have been deposited with
the Cambridge Crystallographic Data centre as supplemental publication No.
CCDC-855405. Copies of the data can be obtained, free of charge on application
to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 (0)1223 336033 or
email: deposit@ccdc.cam.ac.uk).
A.C. and B.N. thank the C.S.I.R., New Delhi, India for the grant of
Senior Research Fellowship and A.L. is thankful to the University of
Delhi, India for the grant of UTA (University Teacher assistantship).
28. General procedure for the synthesis of 6-amino-5-[aryl-(2-hydroxy-4,4-dimethyl-
6-oxo-cyclohex-1-enyl)methyl]-1,3-dimethyl-1H-pyrimidine-2,4-dione (2): In
a
typical experiment, a mixture of 4-chlorobenzaldehyde (0.14 g, 1.0 mmol), 6-
amino-1,3-dimethyluracil (0.15 g, 1.0 mmol), dimedone (0.14 g, 1.0 mmol),
InCl3 (20 mol % or 0.2 mmol), and 10 mL of water was placed in a 50 mL round-
bottomed flask and the mixture was stirred under reflux. The reaction was
complete within 15 min as analyzed by TLC using petroleum ether/ethyl
acetate (60:40) as eluent. The reaction mixture was allowed to cool to room
temperature. The precipitate formed was collected by filtration at pump,
washed with water and ethanol to yield 0.49 g (92%) of pure 6-amino-5-[(4-
chlorophenyl)-(2-hydroxy-4,4-dimethyl-6-oxo-cyclohex-1-enyl)methyl]-1,3-
dimethyl-1H-pyrimidine-2,4-dione (2a) as identified by spectral data.
General procedure for the synthesis of pyrimidine/pyrazole derivatives (3–10):
A mixture of aldehyde (1.0 mmol), 6-amino-1,3-dimethyl uracil/3-methyl-1-
phenyl-1H-pyrazol-5-amine (1.0 mmol), dimedone/cyclohexane-1,3-dione/
indane-1,3-dione/cyclopentane-1,3-dione/5-methyl-cyclohexane-1,3-dione/2-
hydroxy-1,4-naphthoquinone (1.0 mmol), InCl3 (20 mol % or 0.2 mmol), and
10 mL of water was placed in a 50 mL round-bottomed flask and stirred under
reflux for an appropriate time as mentioned in Tables 2 or 3 or 4. The progress
of the reaction was monitored by TLC (eluent/methanol/chloroform). After
completion of the reaction, the reaction mixture was allowed to cool at room
temperature. The precipitate formed was collected by filtration at pump,
washed with water and ethanol to obtain pure pyrimidine/pyrazole derivatives
(3–10). The products were identified by spectral data. The aqueous filtrate
containing InCl3 was used as such for investigating the recyclability of the
catalyst.
Supplementary data
Supplementary data associated with this article can be found, in the
References and notes
1. (a) Li, C. J.; Chan, T. H. Tetrahedron 1999, 55, 11149; (b) Babu, G.; Perumal, P. T.
Aldrichim. Acta 2000, 33, 16; (c) Ghosh, R. Indian J. Chem. 2001, 40B, 550; (d)
Sharma, S. D.; Hazarika, P.; Konwar, D. Tetrahedron Lett. 2008, 49, 2216.
2. Chao, J. L. Chem. Rev. 2005, 105, 3095.
3. Li, C. J.; Chan, T. H. Organic Reactions in Aqueous Media; Wiley: New York, NY,
2007.
4. (a) Pokhodylo, N. T.; Matiychuk, V. S.; Obushak, M. D. J. Comb. Chem. 2009, 11,
481; (b) Ghahremanzadeh, R.; Sayyafi, M.; Ahadi, S.; Bazgir, A. J. Comb. Chem.
2009, 11, 393.
5. (a) Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley-VCH: Weinheim,
2005; (b) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168.
6. (a) Elguero, J.; Goya, P.; Jagerovic, N.; Silva, A. M. S. Targets Heterocycl. Syst.
2002, 6, 52; (b) Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins,
P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.;
Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.;