SPECIAL TOPIC
Syntheses of Mono-, Di-, and Trifluorinated Styrenic Monomers
1889
ganic phases were washed with sat. NaHCO3 soln and brine and
dried (MgSO4). Et2O was removed and the crude product was puri-
fied by column chromatography (silica gel, PE 30-40) or by Biotage
SP-4 System (PE 30-40); yield: 0.62 g (4.0 mmol, 30%); Rf = 0.53
(pentane).
HRMS (EI): m/z [M]+ calcd for C9H6BrF3: 249.9605; found:
249.9608.
Acknowledgment
1H NMR (400 MHz, CDCl3): d = 5.69 (s, 1 H, C=CH2), 5.75 (s, 1
H, C=CH2), 6.42 (t, J = 55.4 Hz, 1 H, CF2H), 7.40 (m, 3 H, HAr),
7.51 (m, 2 H, HAr).
13C NMR (100 MHz, CDCl3): d = 115.4 (t, J = 239.7 Hz, CF2H),
118.9 (t, J = 9.7 Hz, H2C=CCF2H), 126.9 (CAr), 128.5 (CAr), 128.6
(CAr), 134.7 (CAr), 141.9 (t, J = 20.0 Hz, H2C=CCF2H).
19F NMR (376 MHz, CDCl3): d = –113.2 (d, J = 56.0 Hz, 2 F,
CF2H).
HRMS (CI): m/z [M]+ calcd for C9H8F2: 154.0594; found:
154.0593.
We gratefully thank the European Community for funding through
a Marie Curie Fellowship (PIEF-GA-2008-220323 for JW and
PIEF-GA-2009-235510 for TM). FLUOLEAD was kindly provi-
ded to us by Dr. Teruo Umemoto (IM&T Research, Inc.).
References
(1) (a) Wall, L. A. Fluoropolymers; Wiley: New York, 1972.
(b) Feiring, A. E. In Organofluorine Chemistry: Principles
and Commercial Applications; Banks, R. E.; Smart, B. E.;
Tatlow, J. C., Eds.; Plenum Press: New York, 1994, Chap.
15, 339–372. (c) Scheirs, J. Modern Fluoropolymers;
Wiley: New York, 1997. (d) Hougham, G.; Davidson, T.;
Cassidy, P.; Johns, K. Fluoropolymers; Kluvert: New York,
1999. (e) Ameduri, B.; Boutevin, B. Well Architectured
Fluoropolymers: Synthesis, Properties and Applications;
Elsevier: Amsterdam, 2004.
(2) (a) Kobayashi, S.; Munekuta, S.; Unoki, M.; Iwamoto, T.
Patent EP 0239935, 1987. (b) Yamamoto, T.; Matsumoto,
T.; Shimada, K.; Uozu, Y.; Murata, R. Patent EP 0256765,
1988. (c) Skutnik, B. J. Patent AU 569145, 1988.
(d) Yamamoto, S.; Matsumoto, M. Patent JP 63430104,
1988.
(3) Boutevin, B.; Pietrasanta, Y. Les Acrylates et poly Acrylates
fluorés; Erec: Paris, 1998.
(4) Banks, B. A. The Use of Fluoropolymers in Space
Applications, Modern Fluoropolymers; Wiley: New York,
1999, Chap. 4, 103–114.
(5) (a) Souzy, R.; Ameduri, B.; Boutevin, B. J. Polym. Sci., Part
A: Polym. Chem. 2004, 42, 5077. (b) Kostov, G.; Tredwell,
M.; Ameduri, B.; Gouverneur, V. J. Poly. Sci., Part A:
Polym. Chem. 2007, 45, 3843.
(6) (a) Olofsson, K.; Larhed, M.; Hallberg, A. J. Org. Chem.
1998, 63, 5076. (b) Tredwell, M.; Gouverneur, V. Org.
Biomol. Chem. 2006, 4, 26. (c) Nyffeler, P. T.; Duron, S. G.;
Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem.
Int. Ed. 2005, 44, 192.
(7) Mo, J.; Xu, L.; Xiao, J. J. Am. Chem. Soc. 2005, 127, 751.
(8) Luo, H.-Q.; Loh, T.-P. Tetrahedron Lett. 2009, 50, 1554.
(9) (a) Mo, J.; Xu, L.; Ruan, J.; Liu, S.; Xiao, J. Chem. Commun.
2006, 3591. (b) Pei, W.; Sun, L.; Xiao, J. Patent CN
1,634,825, 2005.
(10) Organ, M. G.; Murray, A. P. J. Org. Chem. 1997, 62, 1523.
(11) Bresciani, S.; Slawin, A. M. Z.; O’Hagan, D. J. Fluorine
Chem. 2009, 130, 537.
(12) (a) Kotov, S. V.; Pedersen, S. D.; Qiu, W.; Qiu, Z.-M.;
Burton, D. J. J. Fluorine Chem. 1997, 82, 13. (b) Stone, C.;
Daynard, T. S.; Hu, L.-Q.; Mah, C.; Steck, A. E. J. New
Mater. Electrochem. Syst. 2000, 3, 43. (c) Lafitte, B.;
Jannasch, P. On the Prospects for Phosphonated Polymers
as Proton-Exchange Fuel Cell Membranes, In Advances in
Fuel Cells; Zhao, T.; Kreuer, K.-D.; Van Nguyen, T., Eds.;
Elsevier: Amsterdam, 2007, Chap. 3.
(13) (a) Ohmori, H.; Nakai, S.; Masui, M. J. Chem. Soc., Perkin
Trans. 1 1979, 2023. (b) Obrycki, R.; Griffin, C. E. J. Org.
Chem. 1968, 33, 632. (c) Plumb, J. B.; Obrycki, R.; Griffin,
C. E. J. Org. Chem. 1966, 31, 2455.
a-(Trifluoromethyl)styrenes 20; General Procedure (GP5)
To a soln of 19 (1.5 equiv) in DME–THF (1:1, 3 mL) and aq 2 M
KOH (2 mL) was added phenylboronic acid 18 (1 equiv),
PdCl2(PPh3)2 (0.03 equiv), and AsPh3 (0.15 equiv) under an inert at-
mosphere in a pressure tube. The mixture was sealed and stirred at
74 °C for 12 h.25 The mixture was cooled to r.t., H2O (10 mL) was
added, and the mixture was extracted with Et2O (2 × 10 mL). The
combined organic layers were washed with brine (3 × 10 mL) and
dried (MgSO4). The solvent was removed and the residue was puri-
fied by short-path distillation under reduced pressure or by column
chromatography (silica gel, PE 30-40) or by Biotage SP-4 System
(PE 30-40).
(3,3,3-Trifluoroprop-1-en-2-yl)benzene (20a)
According to GP5 using 19 (7.87 g, 45.0 mmol) in DME–THF (1:1,
90 mL) and aq 2 M KOH (60 mL) and phenylboronic acid (18a,
3.66 g, 30.0 mmol), PdCl2(PPh3)2 (0.63 g, 0.90 mmol), and AsPh3
(1.38 g, 4.50 mmol); workup used H2O (300 mL), extraction with
Et2O (2 × 300 mL), and washing with brine (3 × 300 mL); yield:
4.34 g (25.2 mmol, 84%); bp 55–57 °C/17 mbar; Rf = 0.6 (pentane).
1H NMR (400 MHz, CDCl3): d = 5.79 (m, 1 H, C=CH2), 5.98 (m, 1
H, C=CH2), 7.41 (s, 3 H, HAr), 7.48 (s, 2 H, HAr).
13C NMR (100 MHz, CDCl3): d = 120.4 (q, J = 5.7 Hz,
H2C=CCF3), 123.4 (q, J = 274.1 Hz, H2C=CCF3), 127.4 (CAr),
128.6 (CAr), 129.0 (CAr), 133.7 (CAr), 139.0 (q, J = 29.1 Hz,
H2C=CCF3).
19F NMR (376 MHz, CDCl3): d = –64.8 (s, 3 F, CF3).
HRMS (CI): m/z [M]+ calcd for C9H7F3: 172.0500; found:
172.0504.
1-Bromo-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (20b)
According to GP5 using 19 (5.25 g, 30.0 mmol) in DME–THF (1:1,
60 mL) and aq 2 M KOH (40 mL), and 4-bromophenylboronic acid
(18b, 4.02 g, 20.0 mmol), PdCl2(PPh3)2 (0.42 g, 0.60 mmol), and
AsPh3 (0.92 g, 3.00 mmol); workup used H2O (300 mL), extraction
with Et2O (2 × 200 mL), and washing with brine (3 × 200 mL);
yield: 2.71 g (10.8 mmol, 54%); bp 86–88 °C/17 mbar; Rf = 0.58
(pentane).
1H NMR (400 MHz, CDCl3): d = 5.78 (m, 1 H, C=CH2), 5.98 (m, 1
H, C=CH2), 7.33 (d, J = 8.5 Hz, 2 H, HAr), 7.52 (d, J = 8.5 Hz, 2 H,
HAr).
13C NMR (100 MHz, CDCl3): d = 120.9 (q, J = 5.8 Hz,
H2C=CCF3), 123.0 (q, J = 273.8 Hz, H2C=CCF3), 123.3 (CAr),
127.0 (CAr), 131.8 (CAr), 132.5 (CAr), 138.0 (q, J = 30.7 Hz,
H2C=CCF3).
(14) (a) Balthazor, T. M.; Grabiak, R. C. J. Org. Chem. 1980, 45,
5425. (b) Tavs, P. Chem. Ber./Recl 1970, 103, 2428.
19F NMR (376 MHz, CDCl3): d = –64.9 (s, 3 F, CF3).
Synthesis 2010, No. 11, 1883–1890 © Thieme Stuttgart · New York