1122
Y. Zhang et al.
LETTER
(4) (a) Kolb, H. C.; VanNiewenhze, M. S.; Sharpless, K. B.
tion). O=Ru(OAc)3 is a new compound. Its life time is less
than 1 hour according to our MS (ES) analysis. The fact
that the oxidation can be only performed in AcOH is prob-
ably due to the stability of O=Ru(OAc)3 in AcOH. Pre-
sumably, oxidative species other than O=Ru(OAc)3 exist
in a minor amount. Probably they oxidize glycol mo-
noester products further and cause the reduction in the ox-
idation yield because Ru exists in several oxidation states
and oxidize various substrates.7e
Chem. Rev. 1994, 94, 2483. (b) Shing, T. K. M.; Tai, V. W.;
Tam, E. K. W. Angew. Chem., Int. Ed. Engl. 1994, 33, 2312.
(c) Plietker, B.; Niggemann, M. Org. Lett. 2003, 5, 3353.
(d) Santoro, S.; Santi, C.; Sabatini, M.; Testaferri, L.;
Tiecco, M. Adv. Synth. Catal. 2008, 350, 2881; and
references cited therein.
(5) Yang, Z.; Zhou, W. J. Chem. Soc., Chem. Commun. 1995,
743.
(6) Deubel, D. V.; Frenking, G. Acc. Chem. Res. 2003, 36, 645.
(7) (a) Higuchi, T.; Ohtake, H.; Hirobe, M. Tetrahedron Lett.
1989, 30, 6545. (b) Ohtake, H.; Higuchi, T.; Hirobe, M.
Tetrahedron Lett. 1992, 33, 2521. (c) Groves, J. T.; Quinn,
R. J. Am. Chem. Soc. 1985, 107, 5790. (d) Groves, J. T.;
Bonchio, M.; Carofilio, T.; Shalyaev, T. J. Am. Chem. Soc.
1996, 118, 8961. (e) Murahashi, S.; Komiya, N. In Modern
Oxidation Methods; Bäckvall, J., Ed.; Wiley-VCH:
Weinheim, 2004, 165.
(8) Murahashi, S.; Saito, T.; Hanaoka, H.; Murakami, Y.; Naota,
T.; Kumobayashi, H.; Akutagawa, S. J. Org. Chem. 1993,
58, 2929.
(9) (a) Vedejs, E.; Daugulis, O.; Diver, S. T. J. Org. Chem.
1996, 61, 430. (b) Naemura, K.; Miyabe, H.; Shingai, Y.
J. Chem. Soc., Perkin Trans. 1 1991, 957. (c) Naemura, K.;
Murata, M.; Tanaka, R.; Yano, M.; Hirose, K.; Tobe, Y.
Tetrahedron: Asymmetry 1996, 7, 3285. (d) Morimoto, T.;
Hirano, M.; Koyama, T. J. Chem. Soc., Perkin Trans. 2
1985, 1109.
In summary, we have, for the first time, developed an eco-
nomical and environmentally friendly selective oxidation
system of aryl olefins, and the aryl olefins have been
chemo-, regio-, and stereoselectively transformed into
syn-aryl glycol monoesters. This represents the first ex-
ample of selective synthesis of syn-aryl glycol monoesters
in the presence of aliphatic C=C bonds. The terminal oxi-
dant is H2O2, which is safe and economical and is regard-
ed as one of the two green oxidants (oxygen and H2O2).
The protocol and purification of the reaction are simple.
This procedure has provided a practical synthesis of syn-
aryl glycol monoester from aryl olefins. To synthesize
bioactive natural products such as lignans and styryllac-
tones and to shorten the routes leading to a few other
drugs, we are presently working on enantioselective syn-
thesis of aryl glycol esters as a protocol.
(10) Iida, H.; Tanaka, M.; Kibayashi, C. J. Org. Chem. 1984, 49,
1909.
(11) (a) Volkmann, R. A.; Weeks, P. D.; Kuhla, D. E.; Whipple,
E. B.; Chmurny, G. N. J. Org. Chem. 1977, 42, 3976.
(b) Wender, P. A.; McDonald, F. E. J. Am. Chem. Soc. 1990,
112, 4956. (c) Rumbo, A.; Castedo, L.; Mourino, A.;
Mascarenas, J. L. J. Org. Chem. 1993, 58, 5585.
(d) Rodríguez, J. R.; Rumbo, A.; Castedo, L.; Mascarenas,
J. L. J. Org. Chem. 1999, 64, 4560.
(12) General Procedure for the Oxidation of Aryl Olefins
To a solution of olefin (1 mmol) and RuCl3·nH2O (0.02
mmol) in AcOH (20 mL) was added H2O2 (30%, 2 mmol) in
AcOH (5 mL) dropwisely at r.t. When all H2O2 was added in
15 min, the reaction was completed as checked by TLC. The
reaction mixture was diluted with H2O (100 mL), and
extracted with EtOAc (3 × 30 mL). The organic layers were
combined, neutralized with aq NaHCO3 (3 × 30 mL),
washed with brine (3 × 30 mL), dried over anhyd Na2SO4,
and concentrated in vacuum to give the crude product which
was purified by flash chromatography on silica gel to afford
the corresponding product, the aryl glycol monoester (for
details: Table 1 and Supporting Information).
Supporting Information for this article is available online at
Acknowledgment
We thank NSFC (20572078) for financial support.
References and Notes
(1) (a) El-Zayat, A. A. E.; Ferrigni, N. R.; McCloud, T. G.;
McKenzie, A. T.; Byrn, S. R.; Cassady, J. M.; Chang, C.;
McLaughlin, J. L. Tetrahedron Lett. 1985, 26, 955.
(b) Mukai, C.; Yamashita, H.; Hirai, S.; Hanaoka, M.;
McLaughlin, J. L. Chem. Pharm. Bull. 1999, 47, 131.
(c) Blazquez, M. A.; Bermejjo, A.; Zafra-Polo, M. C.;
Cortes, D. Phytochem. Anal. 1999, 10, 161. (d) Mereyala,
H. B.; Joe, M. Curr. Med. Chem. Anti-Cancer Agents 2001,
1, 293. (e) Yan, D.; Chen, H.; Xu, X.; Cheng, M.; Wang, H.;
Li, A.; Shi, L. Chinese J. Struct. Chem. 2004, 23, 571.
(f) Tuchida, P.; Munyoo, B.; Pohmakotr, M.; Thinapong, P.;
Sophasan, S.; Santisuk, T.; Reutrakul, V. J. Nat. Prod. 2006,
69, 1728.
(2) (a) Min, H.; Park, E.; Hong, J.; Kang, Y.; Kim, S.; Chung,
H.; Woo, E.; Hung, T.; Youn, U. J.; Kim, Y. S.; Kang, S. S.;
Bae, K.; Lee, S. K. Bioorg. Med. Chem. 2008, 18, 523; and
references cited therein. (b) Shen, Y.; Lin, Y.; Cheng, Y.;
Chiang, M. Y.; Liou, S.; Khalil, A. T. Phytochemistry 2009,
70, 114.
Spectroscopic Data for a Product (Entry 27, Table 1)
White solid (mp 248–250 °C); yield 50%. IR (KBr): n =
3436, 2935, 2814, 1731, 1675, 1546, 1218, 1034 cm–1. 1H
NMR (500 MHz, DMSO-d6): d = 7.34–7.04 (m, 12 H), 6.18
(m, 2 H), 6.14 (d, J = 5.5 Hz, 1 H), 5.79 (d, J = 6.5 Hz, 1 H),
5.33 (d, J = 4.9 Hz, 1 H), 4.01 (dd, J = 7.0, 14.1 Hz, 1 H),
3.46 (m, 2 H), 3.30 (m, 2 H), 2.22 (s, 3 H), 2.00 (s, 3 H), 1.56
(m, 2 H) ppm. 13C NMR (125 MHz, DMSO-d6): d = 177.16,
177.14, 170.65, 137.57, 136.67, 136.11, 135.20, 134.26,
129.48, 129.32, 128.83, 128.54, 127.37, 127.01, 126.76,
126.14, 71.70, 62.55, 60.47, 52.41, 46.12, 45.50, 21.41,
21.25 ppm. ESI-MS: m/z = 585.2 [M + Na]+. ESI-HRMS:
m/z calcd for C34H30N2O6 + Na [M + Na]+: 585.2001; found:
585.2009.
(3) (a) Woodward, R. B.; Brutcher, F. V. J. Am. Chem. Soc.
1958, 80, 209. (b) Li, Y.; Song, D.; Dong, V. M. J. Am.
Chem. Soc. 2008, 130, 2962.
Synlett 2010, No. 7, 1118–1122 © Thieme Stuttgart · New York