and complex molecules.4 The use of transition metal catalysts
provides new opportunities for highly selective cycloaddition
reactions since complexation of the metal to an unactivated
alkene, alkyne, or diene significantly modifies the reactivity of
this moiety, opening the way for enhanced reactivity and novel
reactions. Recent developments in transition-metal-catalyzed
[2 + 2 + 1],5 [4 + 2],6 [5 + 2],7 [4 + 4],8 and [6 + 2]9
cycloaddition reactions have provided efficient methods for the
construction of five- to eight-membered rings. We and others
have studied various aspects of transition-metal-catalyzed
[2 + 2] cycloadditions of an alkene and an alkyne for the
synthesis of cyclobutenes, including development of novel
catalysts, study of the intramolecular variant of the reaction,
investigation of the chemo- and regioselectivity of unsym-
metrical substrates, and asymmetric induction studies using
chiral auxiliaries on the alkyne component.3,10-12 To understand
the mechanism of the Ru-catalyzed [2 + 2] cycloadditions
thoroughly so that one can design more active catalysts for the
cycloadditions, studies on the reactivity of both the reaction
partners are essential. Very little is known whether electron-
rich or electron-deficient alkenes and alkynes react faster or
slower in the Ru-catalyzed [2 + 2] cycloadditions, and the steric
requirements of the cycloaddition have yet to be determined.
We have recently reported our studies on the reactivity of the
alkene component in ruthenium-catalyzed [2 + 2] cycloadditions
Study on the Reactivity of the Alkyne Component
in Ruthenium-Catalyzed [2 + 2] Cycloadditions
between an Alkene and an Alkyne
Robert W. Jordan, Karine Villeneuve, and William Tam*
Guelph-Waterloo Centre for Graduate Work in Chemistry and
Biochemistry, Department of Chemistry, UniVersity of Guelph,
Guelph, Ontario, Canada N1G 2W1
ReceiVed April 25, 2006
The ruthenium-catalyzed [2 + 2] cycloadditions of norbor-
nadiene with a variety of alkynes have been investigated.
Electronic effect of the alkyne component has shown to play
an important role on the rate of the cycloaddition, and the
reactivity of the alkyne component increases dramatically
as the alkyne becomes more electron deficient. Increase in
the steric bulk of the alkyne component decreases the
reactivity of the alkyne component. It was also found that
chelation effect of propargylic alcohols greatly enhanced the
reactivity of the alkyne component in the ruthenium-
catalyzed [2 + 2] cycloadditions.
(4) For reviews on transition-metal-catalyzed cycloadditions, see: (a)
Lautens, M.; Klute, W.; Tam, W. Chem. ReV. 1996, 96, 49. (b) Hegedus,
L. S. Coord. Chem. ReV. 1997, 161, 129. (c) Wender, P. A.; Love, J. A. In
AdVances in Cycloaddition; JAI Press: Greenwich, CT, 1999; Vol. 5, pp
1-45.
(5) For recent reviews on transition-metal-catalyzed [2 + 2 + 1]
cycloadditions, see: (a) Pericas, M. A.; Balsells, J.; Castro, J.; Marchueta,
I.; Moyano, A.; Riera, A.; Vazquez, J.; Verdaguer, X. Pure Appl. Chem.
2002, 74, 167. (b) Sugihara, T.; Yamaguchi, M.; Nishizawa, M. Chem.s
Eur. J. 2001, 7, 1589. (c) Brummond, K. M.; Kent, J. L. Tetrahedron 2000,
56, 3263. (d) Buchwald, S. L.; Hicks, F. A. In ComprehensiVe Asymmetric
Catalysis I-III; Jabosen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-
Verlag: Berlin, 1999; Vol. 2, pp 491-510. (e) Keun Chung, Y. Coord.
Chem. ReV. 1999, 188, 297.
(6) (a) Wender, P. A.; Jenkins, T. E. J. Am. Chem. Soc. 1989, 111, 6432.
(b) Jolly, R. S.; Luedtke, G.; Sheehan, D.; Livinghouse, T. J. Am. Chem.
Soc. 1990, 112, 4965. (c) Wender, P. A.; Jenkins, T. E.; Suzuki, S. J. Am.
Chem. Soc. 1995, 117, 1843. (d) O’Mahoney, D. J. R.; Belanger, D. B.;
Livinghouse, T. Synlett 1998, 443. (e) Murakami, M.; Ubukata, M.; Itami,
K.; Ito, Y. Angew. Chem., Int. Ed. 1998, 37, 2248. (f) Paik, S.-J.; Son, S.
U.; Chung, Y. K. Org. Lett. 1999, 1, 2045. (g) Hilt, G.; Smolko, K. I. Angew.
Chem., Int. Ed. 2003, 42, 2795. (h) Witulski, B.; Lumtscher, J.; Bergstra¨ber,
U. Synlett 2003, 708. (i) Hilt, G.; Lu¨ers, S.; Harms, K. J. Org. Chem. 2004,
69, 624.
(7) (a) Wender, P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc.
1995, 117, 4720. (b) Wender, P. A.; Rieck, H.; Fuji, M. J. Am. Chem. Soc.
1998, 120, 10976. (c) Trost, B. M.; Shen, H. Angew. Chem., Int. Ed. 2001,
40, 2313. (d) Wender, P. A.; Williams, T. J. Angew. Chem., Int. Ed. 2002,
41, 4550.
(8) (a) Wender, P. A.; Ihle, N. C. J. Am. Chem. Soc. 1986, 108, 4678.
(b) Wender, P. A.; Nuss, J. M.; Smith, D. B.; Suarez-Sobrino, A.; Vagberg,
J.; Decosta, D.; Bordner, J. J. Org. Chem. 1997, 62, 4908.
(9) Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R. J. Am. Chem. Soc.
2000, 122, 7815.
(10) Trost, B. M.; Yanai, M.; Hoogsteen, K. J. Am. Chem. Soc. 1993,
115, 5294.
(11) (a) Mitsudo, T.; Kokuryo, K.; Takegami, Y. J. Chem. Soc., Chem.
Commun. 1976, 772. (b) Mitsudo, T.; Kokuryo, K.; Shinsugi, T.; Nakagawa,
Y.; Watanabe, Y.; Takegami, Y. J. Org. Chem. 1979, 44, 4492. (c) Mitsudo,
T.; Naruse, H.; Kondo, T.; Ozaki, Y.; Watanabe, Y. Angew. Chem., Int.
Ed. Engl. 1994, 33, 580.
(12) (a) Huang, D.-J.; Rayabarapu, D. K.; Li, L.-P.; Sambaiah, T.; Cheng,
C.-H. Chem.sEur. J. 2000, 6, 3706. (b) Chao, K. C.; Rayabarapu, D. K.;
Wang, C.-C.; Cheng, C.-H. J. Org. Chem. 2001, 66, 8804.
Cycloaddition reactions are among the most powerful and
most frequently used methods for the construction of rings.1
We have studied various types of cycloaddition reactions of
bicyclic alkenes and are especially interested in those catalyzed
by transition metals.2,3 Transition-metal-catalyzed cycloadditions
have demonstrated their usefulness in the formation of rings
(1) ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Paquette,
L. A., Eds.; Pergamon: Oxford, 1991; Vol. 5, Chapters 1-9. (b) AdVances
in Cycloaddition; JAI Press: Greenwich, CT, 1988-1999; Vols. 1-6.
(2) For our recent contributions on non-metal-catalyzed cycloaddition
reactions of bicyclic alkenes, see: (a) Yip, C.; Handerson, S.; Jordan, R.;
Tam, W. Org. Lett. 1999, 1, 791. (b) Tranmer, G. K.; Keech, P.; Tam, W.
Chem. Commun. 2000, 863. (c) Mayo, P.; Hecnar, T.; Tam, W. Tetrahedron
2001, 57, 5931. (d) Yip, C.; Handerson, S.; Tranmer, G. K.; Tam, W. J.
Org. Chem. 2001, 66, 276. (e) Tranmer, G. K.; Tam, W. J. Org. Chem.
2001, 66, 5113. (f) Tranmer, G. K.; Tam, W. Org. Lett. 2002, 4, 4101.
(3) For our recent contributions on metal-catalyzed cycloaddition reac-
tions of bicyclic alkenes, see: (a) Jordan, R. W.; Tam, W. Org. Lett. 2000,
2, 3031. (b) Jordan, R. W.; Tam, W. Org. Lett. 2001, 3, 2367. (c) Jordan,
R. W.; Tam, W. Tetrahedron Lett. 2002, 43, 6051. (d) Villeneuve, K.;
Jordan, R. W.; Tam, W. Synlett 2003, 2123. (e) Villeneuve, K.; Tam, W.
Angew. Chem., Int. Ed. 2004, 43, 610. (f) Jordan, R. W.; Khoury, P. K.;
Goddard, J. D.; Tam, W. J. Org. Chem. 2004, 69, 8467. (g) Villeneuve,
K.; Riddell, N.; Jordan, R. W.; Tsui, G. C.; Tam, W. Org. Lett. 2004, 6,
4543. (h) Riddell, N.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 3681.
(i) Villeneuve, K.; Tam, W. J. Am. Chem. Soc. 2006, 128, 3514. (j)
Villeneuve, K.; Tam, W. Organometallics 2006, 25, 843. (k) Riddell, N.;
Tam, W. J. Org. Chem. 2006, 71, 1934.
10.1021/jo060864o CCC: $33.50 © 2006 American Chemical Society
Published on Web 06/29/2006
5830
J. Org. Chem. 2006, 71, 5830-5833