AMINO ACID AND PEPTIDE DERIVATIVES
255
6. Gong, F. and Yanofsky, C., Science, 2002, vol. 297,
pp. 1864–1867.
7. Yonath, A., Annu. Rev. Biochem., 2005, vol. 74, pp.
m, H8 of
), 5.63 (1 H, m, H5Ual), 7.35 (2 H, H11, H6Ual),
CH
Ual), 4.35 (7 H, m, H15, H1''', H1', H7
CHU2 al
7.45 (1 H, br s, H20).
Des=TyrꢀOH XVIII)
(found/calc.): 933.6/935.0; Rf 0.15 (F), 0.30 (M).
Des=AlaꢀAlaꢀPheꢀAlaꢀAlaꢀPheꢀLys(Z)ꢀOH XIX),
649–679.
(
;
yield
18%;
m/z
8. Mankin, A.S., Trends Biochem. Sci., 2006, vol. 31,
pp. 11–13.
(
9. Schlunzen, Zarivach, R., F., Harms, J., Bashan, A.,
Tocilj, A., Albrecht, R., Yonath, A., and Franceschi, F.,
Nature, 2001, vol. 413, pp. 814–821.
m/z (found/calc.): 1477.2/1477.6 (M – Z); Rf 0.15
(M).
10. Hansen, J., Ippolito, J.A., Ban, N., Nissen, P., Moore,
P.B., and Steitz, T.A., Moll. Cell, 2002, vol. 10, pp. 117–
128.
11. Tenson, T., Lovmar, M., and Ehrenberg, M., J. Mol.
Biol., 2003, vol. 330, pp. 1005⎯1014.
12. Tenson, T. and Ehrenberg, M., Cell, 2002, vol. 108,
Des=GlyꢀProꢀGlyꢀProꢀGlyꢀProꢀOH
(found/calc.): 1231.0/1234.3; Rf 0.20 (M).
(
XX
)
;
m/z
Preparation of C20ꢀaminoderivatives of tylosin and
desmycosin. Sodium cyanoborohydride (4 equiv) was
added to imminoderivative (XV) or (XX) (1 equiv) in
methanol. The mixture was stirred for 12 h, and the
solvent was removed in a vacuum. The residue was disꢀ
solved in water, adjusted in the cold to pH 3 with 0.1 N
HCl and then to pH 7 with saturated sodium bicarꢀ
bonate and extracted with chloroform. The combined
chloroform extracts were washed with water, dried
with sodium sulfate, evaporated in a vacuum, and the
residue was subjected to chromatographic separation
on a silica gel plate in system C for (XXI) or M for
pp. 591–594.
13. Sumbatyan, N.V., Korshunova, G.A., and Bogdanov, A.A.,
Biokhimiya, 2003, vol. 68, pp. 1436⎯1438.
14. Korshunova, G.A., Sumbatyan, N.V., Fedorova, N.V.,
Kuznetsova, I.V., Shishkina, A.V., and Bogdanov, A.A.,
Bioorg. Khim., 2007, vol. 33, pp. 235–244 [Russ. J.
Bioorg. Chem. (Engl. Tranl.), 2007, vol. 33, pp. 218–
226].
15. McGuire, J., Bonience, W., Higgens, C., Hoehn, M.,
Stark, W., Westhead, J., and Wolfe, R., Antibiot.
Chemother, 1961, vol. 11, pp. 320–327.
(
XXII).
TylꢀTyrꢀOH (XXI); yield 23%; m/z (found/calc.):
1081.9/1081.0; f 0.56 (C), 0.68 (H); λmax (UV) 225,
16. Hamill, R.L., Haney, M.E., McGuire, J.M., and
Stamper, M.C., Antibiotics Tylosin and Desmycosin and
Derivatives Thereof, US Patent No. 3 178 341, 1965.
R
285 nm; 1H NMR (600 MHz, 303 K, CDCl3): unlike
the spectrum of Tyl=Tyr, the signals at 7.45 and 4.74
characteristic of Schiff base are absent, the signals of
the reduced Schiff base appear, signals H19 of tylosin
are shifted to a stronger field (2.16–2.87 ppm in a nonꢀ
reduced Schiff base; 1.5–1.7 ppm in a reduced Schiff
base): 1.5–1.7 (1 H, m, H19), 3.51 (1 H, m, H20),
3.63 (1 H, m, CHα Tyr), 3.74 (1 H, s, NHTyr), 3.76 (1 H,
17. Morin, R. and Gorman, M., OꢀMicaminosyl Tylonoꢀ
lide and Process for the Preparation Thereof, US
Patent No. 3459853, 1969.
18. VasquezꢀLaslop, N., Thum, C., and Mankin, A.S.,
Mol. Cell, 2008, vol. 30, pp. 190–202.
19. Debono, M., Willard, K.E., Kirst, H.A., Wind, J.A.,
Crouse, G.D., Tao, E.V., Vicenzi, J.T., Counter, F.T.,
Ott, J.L., and Ose, E.E., J. Antibiot., 1989, vol. 42,
pp. 1253–1267.
20. Kirst, H.A., Willard, K.E., Debono, M., Toth, J.E.,
Truedell, B.A., Leeds, J.P., Ott, J.L., FeltyꢀDuckꢀ
worth, A.M., Counter, F.T., Ose, E.E., Crouse, G.D.,
Tustin, J.M., and Omura, S., J. Antibiot., 1989, vol. 42,
pp. 1673–1683.
m,
Tyr), 7.37 (5 H, m, H11, Tyr).
CH2
DesꢀGlyꢀProꢀGlyꢀProꢀGlyꢀProꢀOH
(XXII); m/z
(found/calc.): 1233.0/1235.3; f 0.38 (M).
R
ACKNOWLEDGMENTS
We are grateful to the Russian Foundation for Basic
Research (project no. 07ꢀ04ꢀ00902ꢀa) for support.
A.A. Bogdanov is grateful to the Alexander Humboldt
Foundation for support.
21. Mutak, S., Marsik, N., Kramaric, M.D., and Pavlovic, D.,
J. Med. Chem., 2004, vol. 47, pp. 411–431.
22. Lundi, K.M. and Vu, C.B., Amide derivatives of 16ꢀ
Membered Ring Antibiotic Macrolides, US Patent
No. 5716939, 1998.
23. Yang, D., Ng, F.F., and Li, Z.J., J. Am. Chem. Soc.,
REFERENCES
1996, vol. 118, pp. 9794–9795.
24. Woolhead, C.A., McCormick, P.J., and Johnson, A.E.,
1. Nissen, P., Hansen, J., Ban, N., Moore, P.B., and
Cell, 2004, vol. 116, pp. 725–736.
Steitz, T.A., Science, 2000, vol. 289, pp. 920–930.
25. Lu, J. and Deutsch, C., Nat. Struct. Mol. Biol., 2005,
2. Hardesty, B. and Kramer, G., Progr. Nucleic Acid Res.
Mol. Biol., 2000, vol. 66, pp. 41–66.
vol. 12, pp. 1123–1129.
26. Finkel’shtein, A.V. and Ptitsin, O.B., Fizika belka: Kurs
lektsii s tsvetnymi i stereoskopicheskimi illyustratsiyami i
zadachami: 3ꢀe izd (Protein Physics: A Course of Lecꢀ
tures with Color Stereoscopic Illustrations and Probꢀ
lems, 3rd ed.), Moscow: KDU, 2005.
3. Bogdanov, A.A., Molekulyarnaya biologiya, 2003, vol.
37, pp. 1–4.
4. Nakatogawa, H. and Ito, K., Cell, 2002, vol. 109,
pp. 629–636.
5. Jenni, S. and Ban, N., Curr. Opin. Struct. Biol., 2003, 27. Bonora, G.M., Nisato, D., and Toniolo, C., Makromol.
vol. 13, pp. 212–219.
Chem., 1975, vol. 176, pp. 2535–2545.
RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY Vol. 36
No. 2
2010