644
Y. Xu, X. Wan / Tetrahedron Letters 54 (2013) 642–645
Table 3
Synthesis of quinoxaline derivatives via a one-pot procedurea
Ar1
Ar2
1) 0.02 mol % [Ru(cymene)Cl2]2 ,10 mol %
TEMPO, 2.5 equiv Oxone, 2.5 equiv NaHCO3
N
N
Ar1
Ar2
2) 3.0 equiv benzene-1,2-diamine
1
3
N
N
N
N
N
N
F
Cl
3c, 59%
3a, 95%
3b, 96%
N
N
N
N
N
N
Br
I
OMe
3d,
3f,
82%
3e,
78%
95%
N
N
N
N
N
N
Ph
CO2Me
CN
O
3i, 72%
3g, 88%
3h, 79%
a
Step 1: 0.2 mmol alkynes in 5.0 mL of nitromethane and 0.8 mL of water in the presence of 0.5 mmol NaHCO3, 10 mol % TEMPO, and 0.02 mol % Ru catalyst using Oxone
(330 mg, 5% active oxygen) under room temperature for 12 h. Step 2: 3.0 equiv of benzene-1,2-diamine, room temperature for 24 h.
Notably, the presence of halogen substituents on the aromatic
rings did not interfere with the triple bond oxidation process,
affording products that could be further functionalized by transi-
tion-metal-catalyzed cross-coupling reactions (products 2b–2e).
Heteroarenes such as carbazole also underwent clean oxidation
to give the corresponding 1,2-diketone 2n in satisfactory yield.
Usually, alkyl-substituted alkynes were not suitable partners for
1,2-diketone synthesis.3 In sharp contrast, when alkyl-substituted
alkynes were employed under the optimized conditions, products
2o–2s were achieved in moderate to good yields.
Quinoxalines occur widely in biologically active compounds,
functional material, and therapeutic drug molecules.6 With high
efficiency and mild conditions of the oxidation reaction in our
hand, we next explored the possibility of the construction of
quinoxalines directly from alkynes and 1,2-diamine via a one-
pot two-step procedure. The alkyne oxidation was carried out
under the optimized conditions, followed by condensation
cyclization with benzene-1,2-diamine, affording the correspond-
ing quinoxalines in moderate to excellent yields. As shown
in Table 3, several functional groups, such as methoxy, halide,
ester, CN, and benzoyl, on the aromatic moiety were well-
tolerated.
Acknowledgments
A Project Funded by the Priority Academic Program Develop-
ment of Jiangsu Higher Education Institutions (PAPD). This re-
search was also supported by the National Natural Science
Foundation of China (20802047, 21072142).
Supplementary data
Supplementary data associated with this article can be found,
References and notes
1. For example, see: (a) Wadkins, R. M.; Hyatt, J. L.; Wei, X.; Yoon, K. J. P.; Wierdl,
M.; Edwards, C. C.; Morton, C. L.; Obenauer, J. C.; Damodaran, K.; Beroza, P.;
Danks, M. K.; Potter, P. M. J. Med. Chem. 2005, 48, 2906–2915; (b) Ngadjui, B. T.;
Kouam, S. F.; Dongo, E.; Kapche, G. W. F.; Abegaz, B. M. Phytochemistry 2000, 55,
915–919.
2. For example, see: (a) Deng, X.; Mani, N. S. Org. Lett. 2005, 8, 269–272; (b)
Wolkenberg, S. E.; Wisnoski, D. D.; Leister, W. H.; Wang, Y.; Zhao, Z.; Lindsley, C.
W. Org. Lett. 2004, 6, 1453–1456; (c) McKenna, J. M.; Halley, F.; Souness, J. E.;
McLay, I. M.; Pickett, S. D.; Collis, A. J.; Page, K.; Ahmed, I. J. Med. Chem. 2002, 45,
2173–2184; (d) Herrera, A. J.; Rondón, M.; Suárez, E. J. Org. Chem. 2008, 73,
3384–3391.
3. For representative alkynes oxidation for 1,2-diketones, see: (a) Zhu, Z.;
Espenson, J. H. J. Org. Chem. 1995, 60, 7728–7732; (b) Dayan, S.; Ben-David, I.;
Rozen, S. J. Org. Chem. 2000, 65, 8816–8818; (c) Murray, R. W.; Singh, M. J. Org.
Chem. 1993, 58, 5076–5080; (d) Wan, Z.; Jones, C. D.; Mitchell, D.; Pu, J. Y.;
Zhang, T. Y. J. Org. Chem. 2005, 71, 826–828; (e) Yusubov, M. S.; Zholobova, G. A.;
Vasilevsky, S. F.; Tretyakov, E. V.; Knight, D. W. Tetrahedron 2002, 58, 1607–
1610; (f) Giraud, A.; Provot, O.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. Tetrahedron
2006, 62, 7667–7673; (g) Mousset, C.; Provot, O.; Hamze, A.; Bignon, J.; Brion, J.-
D.; Alami, M. Tetrahedron 2008, 64, 4287–4294; (h) Niu, M.; Fu, H.; Jiang, Y.;
Zhao, Y. Synthesis 2008, 2879–2882; (i) Tan, K. J.; Wille, U. Chem. Commun. 2008,
6239–6241; (j) Ren, W.; Xia, Y.; Ji, S.-J.; Zhang, Y.; Wan, X.; Zhao, J. Org. Lett.
2009, 11, 1841–1844; (k) Al-Rashid, Z. F.; Johnson, W. L.; Hsung, R. P.; Wei, Y.;
Conclusion
In summary, we have developed a new protocol for the 1,2-
diketone synthesis through alkyne oxidation catalyzed by ruthe-
nium under room temperature. The mild and neutral conditions,
wide substrate scope, and relatively safe oxidant, as well as its
application in one-pot synthesis of quinoxalines, render this meth-
od a powerful alternative to previous approaches. Further investi-
gations of detailed mechanism and related processes are ongoing
in our laboratories.