Table 3. Competition reaction with selected secondary alcohols.[a]
Entry
Alcohols
Alcohol [equiv.]
Product distribution of isosorbide
Carbonate ethers
Product distribution of alcohol
Carbonates
MC1 MC2 DC
Ethers
Isosorbide [equiv.]
ROH
ROCO2Me
ROMe
MCE1
21
MCE2
20
4
MMI1 MMI2 DMI
1
2
3
(1)
(1)
(1)
2-Octanol (1)
3-OH-tetrahydrofuran (1)
Propylene glycol
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
59
73
83
-
-
-
100
96
91
-
4
9
23
17
-
propyl ether (1)
[a] Isosorbide (0.5 g)/DMC (1:50); NaOMe (6.0 equiv.); Reaction time: 20 h; Reaction conditions: 105 Pa, 908C.
ed to column chromatography. The gradient elution chromatogra-
phy with DCM/MeOH (98:2) on silica gel allowed several of deri-
vates to be isolated as pure compounds:
distilled under vacuum to recover the crude reaction mixture that
was then analyzed by GC–MS.
1
MC-2: C8H12O6; M=204.06 gmolÀ1; H NMR (300 MHz, CDCl3): d=
Acknowledgements
5.12 (d, 1H), 4.64 (t, 1H), 4.52 (d, 1H), 4.31 (q, 1H), 4.12 (d, 1H),
3.99 (dd, 1H), 3.88 (dd, 1H), 3.80 (s, 3H,), 3.56 (dd, 1H),
2.59 ppm(d, 1H,); 13C NMR (75 MHz, CDCl3): d=154.6, 85.3, 81.9,
81.5, 73.5, 73.2, 72.2, 55.1 ppm.
We want to acknowledge the Imperial Chemical Industries Ldt
(ICI) for the support and funding.
1
DC: C10H14O8; M=262 gmolÀ1; H NMR (300 MHz, CDCl3): d=5.09
(d, 1H), 5.05 (t, 1H), 4.88 (t, 1H), 4.53 (d, 1H), 3.98–4.05 (m, 2H),
3.88–3.91 (m, 2H), 3.80 (s, 3H), 3.79 ppm(s, 3H,)
(75 MHz, CDCl3): d=155.0, 154.6, 85.7, 81.0, 80.7, 76.5, 73.1, 70.3,
Keywords: carbohydrates · carbonates · green chemistry ·
methylation · renewable resources
;
13C NMR
55.0, 54.9 ppm.
1
MCE-1: C9H14O6; M=218.08 gmolÀ1; H NMR (300 MHz, CDCl3): d=
[1] a) P. Tundo, A. Perosa, F. Zecchini, Methods and Reagents for Green
Chemistry, John Wiley and Sons, NJ, 2007; b) P. Tundo, V. Esposito,
Green Chemistry Reactions, Springer, Dordrecht, 2008; c) W. Leitner,
Green Chem. 2009, 11, 603.
5.04 (t, 1H), 4.68 (t, 1H), 4.54 (d, 1H), 4.04 (d, 2H), 3.88–3.96 (m,
2H), 3.76 (s, 3H), 3.57–3.60 (m, 1H), 3.43 ppm (s, 3H,); 13C NMR
(75 MHz, CDCl3): d=154.7, 85.6, 81.6, 81.5, 80.4, 73.3, 69.9, 58.2,
54.9 ppm.
1
MCE-2: C9H14O6; M=218.08 gmolÀ1; H NMR (300 MHz, CDCl3): d=
[3] M. Poliakoff, J. M. Fitzpatrick, T. R. Farren, P. T. Anastas, Science 2002,
4.96 (t, 1H), 4.73 (t, 1H), 4.38 (d, 1H), 3.88–3.96 (d, 1H), 3.74–3.84
(m, 4H), 3.72 (s, 3H), 3.29 ppm (s, 3H,); 13C NMR (75 MHz, CDCl3):
d=154.4, 85.6, 81.6, 81.5, 80.8, 73.1, 69.9, 58.2, 54.9 ppm.
[4] a) M. Selva, A. Bomben, P. Tundo, J. Chem. Soc. Perkin Trans. 1 1997, 7,
[5] B. Oster, W. Fechtel in Ullmann’s Encyclopedia Industrial Chem. 1994,
A25, 418–423.
1
MMI-1: C7H12O4; M=160.07 gmolÀ1; H NMR (300 MHz, CDCl3): d=
4.71 (t, 1H), 4.43 (d, 1H), 4.29 (t, 1H), 3.86–3.98 (m, 4H), 3.55 (t,
1H), 3.45 (s, 3H), 2.56 ppm (s, OH,).
DMI: C8H14O4; M=174.09 gmolÀ1 1H NMR (300 MHz, CDCl3): d=
;
4.64 (t, 1H), 4.50 (d, 1H), 3.88–3.99 (m, 4H), 3.85 (m, 1H), 3.53–3.61
(m, 1H), 3.45 (s, 3H), 3.36 ppm (s, 3H). All spectroscopic features of
this product correspond to those reported in the literature.
[7] a) O. Dudeck, O. Jordan, K. T. Hoffmann, A. F. Okuducu, K. Tesmer, T.
Kreuzer-Nagy, D. A. Rꢄ fenacht, E. Doelker, R. Felix, AJNR Am. J. Neurora-
diol. 2006, 27, 1900–1906; b) M. Sawyer, A. E. Ekpe; M. W. Wu, US
6383515, 1999; c) A. East, M. Jaffe, Y. Zhang, L. H. Catalani, US
20080021209, 2008.
[8] The Merck Index, 11th Ed., S Budavari, NJ, USA, 1989.
[9] a) A. Otto, J. W. Wiechers, C. L. Kelly, J. Hadgraft, J. Du Plessis, Skin Phar-
[10] a) U. Romano, F. Rivetti, N. Di Muzio, US Patent 4318862, 1979; b) F.
Rivetti, P. Tundo, P. Anastas, Green Chemistry: Challenging Perspectives,
Oxford University Press: Oxford, 2000, p 201; c) D. Delledonne, F. Rivetti,
Example of a reaction with DMC at reflux condition (Table 2): In a
two-necked round bottom flask equipped with a dephlegmator, 3-
hydroxy-tetrahydrofuran (2.0 g, 0.022 mol, 1 mol. equiv), DMC
102 g (1.13 mol, 50 mol. equiv), and sodium methoxide (7.3 g,
0.136 mol, 3 equiv.) were heated at reflux while stirring continuous-
ly under a nitrogen atmosphere. After 20 h the reaction was
stopped, the mixture was filtrated over Gooch n84, and the DMC
evaporated. The residual solution was distilled under vacuum to re-
cover the crude reaction mixture that was then analyzed by GC–
MS.
Example of a reaction with DMC at reflux condition (Table 3): In a
two-necked round bottom flask equipped with a dephlegmator,
isosorbide (0.5 g, 0.0034 mol, 1 equiv.), DMC (16 g, 0.171 mol,
50 equiv.), 3-hydroxy-tetrahydrofuran (0.3 g, 0.0034 mol, 1 equiv.),
and sodium methoxide (2.2 g, 1.1 mol, 3 equiv.) were heated at
reflux while stirring continuously under a nitrogen atmosphere.
After 20 h the reaction was stopped, the mixture was filtrated over
Gooch n84, and the DMC evaporated. The residual solution was
[14] The yield of DMI in this case is not quantitative due to the lower
amount of base used (ca. 30% equivalents less compared to Tables 1
and 2)
ChemSusChem 2010, 3, 566 – 570
ꢁ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
569