Chow et al.
JOCArticle
Results and Discussion
TABLE 1. Initial Optimization of Reaction Parametersa
Aryl sulfonates are important alternatives to aryl halides in
coupling reactions. Moreover, they are good complements to
aryl halides since their phenolic substitution patterns on the
aromatic ring are different from those of halides. Nevertheless,
previous coupling reactions of phenolic electrophiles were
often focused on aryl triflates. In fact, aryl mesylates are attrac-
tive as they are easily accessible from phenols (by reacting with
MsCl under basic medium), relatively low in cost,10 and pro-
vide better hydrolytic stability. However, cross-coupling reac-
tions utilizing aryl mesylates remain limited.11 Perphaps the
high stability of aryl mesylates implies that it is difficult for
these substrates to undergo oxidative addition in coupling
reactions. In fact, aryl mesylates are challenging substrates as
they are even less reactivethan the corresponding aryl tosylates
in cross-coupling reactions.12 Yet, they provide a better atom-
economy than tosylates.13 In 2008, we reported a palladium
catalyst system for the cross-coupling of arylboronic acids with
entry
solvent
base
% yieldb
1
2
3
t-BuOH
t-BuOH
t-BuOH
t-BuOH
t-BuOH
t-BuOH
DMF
t-AmOH
MeOH
THF
Cs2CO3
K3PO4 H2O
40
75
3
K3PO4
K2CO3
Et3N
98 (89)c
(87)c
10e
4
5
6d
7
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
82
28
52
79
trace
trace
8
9
10
11
toluene
aReaction conditions: ArOMs (1.0 mmol), Ar0BF3K (2.0 mmol), base
(3.0 mmol), Pd(OAc)2 (1 mol %), CM-phos (4 mol %), solvent (3.0 mL)
with stirring for 18 h at 110 °C under nitrogen. bCalibrated GC yields
were reported with dodecane as the internal standard. cIsolated yields in
parentheses. 4 A molecular sieve (0.1 g, granular) was added. A 65% of
reduction side product, tert-butylbenzene, was formed.
(7) For recent selected examples from Molander’s group, see: (a) Molander,
G. A.; Cavalcanti, L. N.; Canturk, B.; Pan, P. S.; Kennedy, L. E. J. Org. Chem.
2009, 74, 7364. (b) Cho, Y. A.; Kim, D. S.; Ahn, H. R.; Canturk, B.; Molander,
G. A.; Ham, J. Org. Lett. 2009, 11, 4330. (c) Molander, G. A.; Febo-Ayala, W.;
Jean-Gerard, L. Org. Lett. 2009, 11, 3830. (d) Molander, G. A.; Jean-Gerard, L.
J. Org. Chem. 2009, 74, 5446. (e) Dreher, S. D.; Lim, S. E.; Sandrock, D. L.;
Molander, G. A. J. Org. Chem. 2009, 74, 3626. (f ) Molander, G. A.; Jean-
Gerard, L. J. Org. Chem. 2009, 74, 1297. (g) Molander, G. A.; Cooper, D. J.
J. Org. Chem. 2008, 73, 3885. (h) Molander, G. A.; Gormisky, P. E.; Sandrock,
D. L. J. Org. Chem. 2008, 73, 2052. (i) Molander, G. A.; Gormisky, P. E. J. Org.
Chem. 2008, 73, 7481. ( j) Molander, G. A.; Sandrock, D. L. Org. Lett. 2007, 9,
1597. (k) Molander, G. A.; Vargas, F. Org. Lett. 2007, 9, 203.
d
e
˚
aryl mesylates.14,15 This system demonstrated a good func-
tional group tolerance on both electrophilic and nucleophilic
partners. To our best knowledge, there has been no literature
report to date regarding the successful cross-coupling of aryl
mesylates and aryltrifluoroborate salts in general. In view of
the beneficial features of trifluoroborate salts as boronic acid
surrogates, we have investigated the feasibilty of using this
nucleophile in mesylate couplings. Herein, we report the first
general Suzuki-type coupling of aryl mesylates and organo-
trifluoroborates. In particular, the reaction scope can be
extended to heteroarylmesylates, heteroaryl-,16 alkenyl-, and
alkyltrifluoroborate salts.
To explore a high efficacy catalytic system for aryl mesylate
and aryltrifluoroborate salt coupling, 4-tert-butylphenyl me-
sylate and potassium p-tolyltrifluoroborate were chosen as the
benchmark substrates in the model reaction (Table 1). Initial
screening of commonly used inorganic and organic bases
indicated that K3PO4 and K2CO3 were suitable bases for this
coupling reaction (Table 1, entries 3 and 4). In general, a very
small amount of phenolic side product was detected. On the
contrary, when triethylamine was applied as an organic base in
this reaction, a large amount of tert-butylbenzene side product
was observed (Table 1, entry 5). Although adding molecular
sieves could reduce the formation of tert-butylbenzene, it also
suppressed the rate of reaction. Among common solvents
surveyed, t-BuOH gave the best result (Table 1, entries 6-11).
The scope of this reaction was then investigated under the
optimized conditions. A wide range of nonactivated aryl mesy-
lates were examined and the results are listed in Table 2. The
deactivated aryl mesylate containing a p-methoxy-substituted
group was found to be a feasible coupling partner (Table 2,
entry 4). Both ortho-substituted aryl mesylates and aryltri-
fluoroborates were also a good combination for this reaction
(8) Barder, T. E.; Buchwald, S. L. Org. Lett. 2004, 6, 2649.
(9) For recent selected examples, see: (a) Abel, R.; Aggarwal, V. K.
Angew. Chem., Int. Ed. 2009, 48, 6289. (b) Doucet, H. Eur. J. Org. Chem.
2008, 2013. (c) Kabalka, G. W.; Zhou, L.-L.; Naravane, A. Tetrahedron Lett.
2006, 47, 6887. (d) Harker, R. L.; Crouch, R. D. Synthesis 2007, 25. (e) Wu,
J.; Zhang, L.; Luo, Y. Tetrahedron Lett. 2006, 47, 6747. (f ) Wu, J.; Zhang, L.;
Xia, H.-G. Tetrahedron Lett. 2006, 47, 1525. (g) Cella, R.; Cunha, R. L. O.
R.; Reis, A. E. S.; Pimenta, D. C.; Klitzke, C. F.; Stefani, H. A. J. Org. Chem.
2006, 71, 244. (h) Kabalka, G. W.; Al-Masum, M. Tetrahedron Lett. 2005, 46,
6329. (i) Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 4397. ( j) Quach, T. D.;
Batey, R. A. Org. Lett. 2003, 5, 1381. (k) Fang, G.-H.; Yan, Z.-J.; Deng,
M.-Z. Org. Lett. 2004, 6, 357. (l) Darses, S.; Genet, J.-P. Eur. J. Org. Chem.
2003, 4313. (m) Arvela, R. K.; Leadbeater, N. E.; Mack, T. L.; Kormos,
C. M. Tetrahedron Lett. 2006, 47, 217. For a review describing indolyl/
imidazolyl phosphine ligands, see: (n) Zapf, A.; Beller, M. Chem. Commun.
2005, 431. For our recent developments of indolyl phosphine, see: (o) So,
C. M.; Yeung, C. C.; Lau, C. P.; Kwong, F. Y. J. Org. Chem. 2008, 73, 7803.
(10) The prices of the sulfonating agents are as follows (in US dollars):
MsCl, ca. $0.075/g; Tf2O, ca. $5/g, from commercial suppliers in 2005-2006.
(11) For Ni-catalyzed mesylate coupling reactions, see: (a) Percec, V.;
Bae, J.-Y.; Zhao, M.; Hill, D. H. J. Org. Chem. 1995, 60, 176. (b) Percec, V.;
Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060. (c) Percec, V.; Golding,
G. M.; Smidrkal, J.; Weichold, O. J. Org. Chem. 2004, 69, 3447. For Pd-
catalyzed mesylate coupling reactions, see: (d) Fors, B. P.; Watson, D. A.;
Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 13552. (e)
Zhang, L.; Qing, J.; Yang, P.; Wu, J. Org. Lett. 2008, 10, 4971. (f ) So, C. M.;
Zhou, Z.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2008, 47, 6402. (g)
So, C. M.; Lee, H. W.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2009, 11, 317. (h)
Naber, J. R.; Fors, B. P.; Wu, X.; Gunn, J. T.; Buchwald, S. L. Heterocycles
2010, 80, 1215. (i) See refs 14 and 15.
(12) Serjeant, E. P.; Dempsey, B., Eds. Ionization Constants of Organic Acids
in Solution; IUPAC Chemical Data Series No. 23; Pergamon Press: Oxford, UK,
1979 (cf. methanesulfonic acid, pKa = -1.9; p-toluenesulfonic acid, pKa = -2.8;
benzenesulfonic acid, pKa = -6.5; triflic acid, pKa = -14.9 ).
(13) For Ni-catalyzed Suzuki-type coupling with tosylate partners, see:
(a) Zim, D.; Lando, V. R.; Dupont, J.; Monteiro, A. L. Org. Lett. 2001, 3,
3049. (b) Tang, Z. Y.; Hu, Q. S. J. Am. Chem. Soc. 2004, 126, 3058. For Pd-
catalyzed Suzuki-type coupling with tosylate partners, see: (c) Nguyen,
H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818. (d)
Zhang, L.; Meng, T.; Wu, J. J. Org. Chem. 2007, 72, 9346. (e) So, C. M.; Lau,
C. P.; Chan, A. S. C.; Kwong, F. Y. J. Org. Chem. 2008, 73, 7731.
(14) So, C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2008, 47,
8059. One nonactivated ArOMs þ Ar0BF3K was reported.
(15) For an effective system reported by Buchwald and co-workers
focusing on heteroaryl couplings, see: Bhayana, B.; Fors, B. P.; Buchwald,
S. L. Org. Lett. 2009, 11, 3954.
(16) (a) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, 2nd ed.;
Wiley-VCH: Weinheim, Germany, 2003. (b) Molander, G. A.; Canturk, B.;
Kennedy, L. E. S. J. Org. Chem. 2009, 74, 973.
5110 J. Org. Chem. Vol. 75, No. 15, 2010