M. Mühlberg et al. / Bioorg. Med. Chem. 18 (2010) 3679–3686
3685
249; (c) Pellois, J.-P.; Muir, T. W. Curr. Opin. Chem. Biol. 2006, 10, 487; (d) Durek,
T.; Becker, C. F. W. Biomol. Eng. 2005, 22, 153; (e) Nilsson, B. L.; Soellner, M. B.;
Raines, R. T. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 91; (f) Seitz, O. Org.
Synth. Highl. V 2003, 368; (g) Rauh, D.; Waldmann, H. Angew. Chem. 2007, 119,
840. Angew. Chem., Int. Ed. 2007, 46, 826; (h) Haase, C.; Seitz, O. Angew. Chem.,
Int. Ed. 2008, 47, 1553. Angew. Chem. 2008, 120, 1575; (i) Rademann, J. Angew.
Chem., Int. Ed. 2004, 43, 4554. Angew. Chem. 2004, 116, 4654; (j) Kent, S. B. H.
Chem. Soc. Rev. 2009, 38, 338; (k) Hackenberger, C. P. R.; Arndt, H.-D.;
Sletten, E. M.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009, 48, 6974. Angew. Chem.
2009, 121, 7108; (m) Gracia, S. R.; Gaus, K.; Sewald, N. Future Med. Chem. 2009,
1, 1289.
(Gly) already attached to the resin. The last amino acid was intro-
duced with an N-terminal Boc-protection. The peptide was cleaved
from the resin with 0.5% TFA in CH2Cl2 (including 2.5% TIS) for 2 h.
The resin was filtered off and washed with CH2Cl2. The filtrate and
the washing solution were combined, and the solvent was re-
moved under high vacuum. The C-terminally deprotected peptide
was then dissolved in dry CH2Cl2 (5 ml, 0.033 mmol). After the
addition of 3 equiv DIC and catalytic amounts of DMAP, borane-
protected diphenylphosphinomethane-thiol 5 (5 equiv) was added
and the reaction mixture was stirred for 12 h. The crude reaction
mixture containing the protected phopshinothioester 16 was trea-
ted with a solution containing 97.5% TFA and 2.5% TIS (0.5 ml,
0.033 mmol) for 1 h. The globally deprotected peptide thioester 17
was precipitated from 10 ml dry ethyl ether and characterized by
LC–MS.
2. (a) Meister, S. M.; Kent, S. B. H. Peptides: Structure and Function; Pierce Chemical
Co.: Rockford, IL, 1983. 103; (b) Bird, G. H.; Lajmi, A. R.; Shin, J. A. Anal. Chem.
2002, 74, 219.
3. (a) Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.; Huang, X.;
Barchi, J. J., Jr.; Gellman, S. H. Nature 1997, 387, 381; (b) Sherman, F.; Stewart, J.
W.; Parker, J. H.; Inhaber, E.; Shipman, N. A.; Putterman, G. J.; Gardisky, R. L.;
Margoliash, E. J. Biol. Chem. 1968, 243, 5446; (c) Hohsaka, T.; Sisido, M. Curr.
Opin. Chem. Biol. 2002, 6, 809.
4. (a) Grandjean, C.; Boutonnier, A.; Guerreiro, C.; Fournier, J.-M.; Mulard, L. A. J.
Org. Chem. 2005, 70, 7123–7132; (b) Wittmann, V. Glycopeptides and
Glycoproteins—Synthesis, Structure, and Application; Springer Verlag Berlin
Heidelberg, Heidelberg, 2006; (c) Payne, R. J.; Wong, C.-H. Chem. Commun.
2010, 46, 21; (d) Gamblin, D. P.; Scanlan, E. M.; Davis, B. G. Chem. Rev. 2009,
109, 131.
Analytical HPLC and HRMS (ESI-TOF): m/z = 1057.3638 [M+H]+
(calcd: m/z = 1057.3525) peptide 17 eluted at 15.84 min (Gradient
A).
4.2.7. Peptide cyclization by the traceless Staudinger ligation
The azidopeptide was synthesized on an ABI 433a peptide syn-
thesizer on a TGT-resin (Novabiochem) with the first amino acid
(Gly) already attached to the resin. The peptide was cleaved from
the resin with 0.5% TFA in CH2Cl2 (including 2.5% TIS) for 2 h.
The resin was filtered off and washed with CH2Cl2. The filtrate
and the washing solution were combined, and the solvent was re-
moved under high vacuum. The C-terminally deprotected peptide
was dissolved in dry CH2Cl2 (5 ml, 0.033 mmol). After the addition
of 3 equiv DIC and catalytic amounts of DMAP, borane-protected
diphenylphosphinomethane-thiol 5 (1.5 equiv) was added and
the reaction mixture was stirred for 12 h. The crude reaction mix-
ture containing the protected phosphinothioester 18 was treated
with a solution containing 97.5% TFA and 2.5% TIS (0.5 ml,
0.033 mmol) for 1 h. The globally deprotected thioester was pre-
cipitated from 10 ml dry ethyl ether, characterized by LC–MS to
verify conversion to 18 and re-dissolved in dry DMF (5 ml,
0.033 mmol). For the cyclization 20 equiv DIPEA were added to
the reaction mixture and the reaction mixture was stirred for
12 h. The cyclized peptides 19 were purified by preparative HPLC
(Gradient B). For yields see Scheme 4B. LC/HRMS analysis was car-
ried out to confirm the identity of the final products and the pep-
tide intermediates.
5. Brunsveld, L.; Kuhlmann, J.; Alexandrov, K.; Wittinghofer, A.; Goody, R. S.;
Waldmann, H. Angew. Chem., Int. Ed. 2006, 45, 6622.
6. Johnsson, N.; George, N.; Johnsson, K. Chem. Biol. Chem. 2005, 6, 47.
7. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266, 776.
8. (a) Bang, D.; Pentelute, B. L.; Kent, S. B. H. Angew. Chem. 2006, 118, 4089; .
Angew. Chem., Int. Ed. 2006, 45, 3985; (b) Manabe, S.; Sugioka, T.; Ito, Y.
Tetrahedron Lett. 2007, 48, 849; (c) Warren, J. D.; Miller, J. S.; Keding, S. J.;
Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 6576; (d) Hofmann, R. M.; Muir, T.
W. Curr. Opin. Biotechnol. 2002, 13, 297; (e) Johnson, E. C. B.; Kent, S. B. H. J. Am.
Chem. Soc. 2006, 128, 6640.
9. Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007.
10. For a review see: Köhn, M.; Breinbauer, R. Angew. Chem. 2004, 116, 3168–3178.
Angew. Chem., Int. Ed. 2004, 43, 3106; For labeling in living animals, see:
Prescher, J. A.; Dube, D. H.; Bertozzi, C. R. Nature 2004, 430, 873.
11. Saxon, E.; Armstrong, J. I.; Bertozzi, C. R. Org. Lett. 2000, 2, 2141.
12. (a) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2000, 2, 1939; (b)
Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2001, 3, 9.
13. Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
14. Soellner, M. B.; Nilsson, B. L.; Raines, R. T. J. Org. Chem. 2002, 67, 4993.
15. Soellner, M. B.; Tam, A.; Raines, R. T. J. Org. Chem. 2006, 71, 9824.
16. (a) Tam, A.; Soellner, M. B.; Raines, R. T. J. Am. Chem. Soc. 2007, 129, 11421; (b)
Tam, A.; Raines, R. T. Bioorg. Med. Chem. 2009, 17, 1055.
17. (a) Soellner, M. B.; Nilsson, B. L.; Raines, R. T. J. Am. Chem. Soc. 2006, 128, 8820;
(b) Tam, A.; Soellner, M.; Raines, R. T. Org. Biomol. Chem. 2008, 6, 1173.
18. (a) Soellner, M. B.; Dickson, K. A.; Nilsson, B. L.; Raines, R. T. J. Am. Chem. Soc.
2003, 125, 11790; (b) Köhn, M.; Wacker, R.; Peters, C.; Schroeder, H.; Soulere,
L.; Breinbauer, R.; Niemeyer, C. M.; Waldmann, H. Angew. Chem., Int. Ed. 2003,
42, 5830; (c) Watzke, A.; Gutierrez-Rodriguez, M.; Köhn, M.; Wacker, R.;
Schroeder, H.; Breinbauer, R.; Kuhlmann, J.; Alexandrov, K.; Niemeyer, C. M.;
Goody, R. S.; Waldmann, H. Bioorg. Med. Chem. 2006, 14, 6288; (d) Watzke, A.;
Köhn, M.; Gutierrez-Rodriguez, M.; Wacker, R.; Schroeder, H.; Breinbauer, R.;
Kuhlmann, J.; Alexandrov, K.; Niemeyer, C. M.; Goody, R. S.; Waldmann, H.
Angew. Chem., Int. Ed. 2006, 45, 1408.
Analytical HPLC and HRMS (ESI-TOF): 19a: m/z = 1133.5745
[M+H]+ (calcd: m/z = 1133.5848); 19c: m/z = 2107.0337 [M+H]+
(calcd: m/z = 2107.0393), 1054.0136 [M+2H]2+ (calcd: m/z =
1054.0236). The peptide 19a eluted at 13.67 min and 19c eluted
at 16.09 min (Gradient A).
19. (a) Nilsson, B. L.; Hondal, R. J.; Soellner, M. B.; Raines, R. T. J. Am. Chem. Soc.
2003, 125, 5268; (b) Liu, L.; Hong, Z.-Y.; Wong, C.-H. ChemBioChem 2006, 7,
429; (c) Merkx, R.; Rijkers, D. T. S.; Kemmink, J.; Liskamp, R. M. J. Tetrahedron
Lett. 2003, 44, 4515.
20. For the use of borane-protected phosphinothioesters in the conjugation of
unprotected carbohydrates to protein carriers, see: Grandjean, C.; Boutonnier,
A.; Guerreiro, C.; Fournier, J.-M.; Mulard, L. A. J. Org. Chem. 2005, 70, 7123.
21. (a) David, O.; Meester, W. J. N.; Bieräugel, H.; Schoemaker, H. E.; Hiemstra, H.; van
Maarseveen, J. H. Angew. Chem., Int. Ed. 2003, 42, 4373; (b) Masson, G.; den Hartog,
T.; Schoemaker, H. E.; Hiemstra, H.; van Maarseveen, J. H. Synlett 2006, 865.
22. Brunel, J. M.; Faure, B.; Maffei, M. Coord. Chem. Rev. 1998, 180, 665.
23. Kleineweischede, R.; Hackenberger, C. P. R. Angew. Chem., Int. Ed. 2008, 47,
5984.
Acknowledgements
The authors acknowledge financial support from the German
Science Foundation (DFG) within the Emmy-Noether program
(HA 4468/2-1), the Sonderforschungsbereich 765 ‘Multivalency’
and the Fonds der Chemischen Industrie (FCI, doctoral scholarship
to M.M.) The Royal Scientific Society of Jordan is acknowledged for
a Scholarship to D.M.M.J.
24. For small molecules the use of scavengers does not influence the overall yield,
however, addition of TIS is recommended when peptides are employed (see
also Ref.23).
25. For other glycosylamide syntheses using the traceless Staudinger ligation, see:
(a) He, Y.; Hinklin, R. J.; Chang, J.; Kiessling, L. L. Org. Lett. 2004, 6, 4479; (b)
Bianchi, A.; Bernardi, A. Tetrahedron Lett. 2004, 45, 2231; (c) Bianchi, A.; Russo,
A.; Bernardi, A. Tetrahedron: Asymmetry 2005, 16, 381; (d) Bianchi, A.; Bernardi,
A. J. Org. Chem. 2006, 71, 4565; (e) Schierholt, A.; Shaikh, H. A.; Schmidt-Lassen,
J.; Lindhorst, T. K. Eur. J. Org. Chem. 2009, 3783.
Supplementary data
Supplementary data associated with this article can be found, in
26. Goedert, M.; Spillantini, M. G.; Jakes, R.; Rutherford, D.; Crowther, R. A. Neuron
1989, 3, 519.
References and notes
27. (a) Bayro, M. J.; Mukhopadhyay, J.; Swapna, G. V. T.; Huang, J. Y.; Ma, L.-C.;
Sineva, E.; Dawson, P. E.; Montelione, G. T.; Ebright, R. H. J. Am. Chem. Soc. 2003,
125, 12382; (b) Wilson, K.-A.; Kalkum, M.; Ottesen, J.; Yuzenkova, J.; Chait, B.
1. (a) Hackenberger, C. P. R.; Schwarzer, D. Angew. Chem. 2008, 120, 10182. Angew.
Chem., Int. Ed. 2008, 47, 10030; (b) Muir, T. W. Annu. Rev. Biochem. 2003, 72,