280
M.Z. Asuncion et al. / C. R. Chimie 13 (2010) 270–281
assessed by 1H NMR and GPC suggest that the critical
stage of Janus cube formation occurs during hydrolysis.
Regardless, while such optimization may not be trivial,
the dimethoxy derivatives still remain a potential route
to nanoscale Janus cubes.
(b) S. Dathe, E. Popowski, G. Sonnek, T. Feiher, H. Jancke, U.
Schelm, Euro. Patent 0, 348, 705 A1, 1989 ;
(c) C. Freyer, J. Wolferseder, U. Peetz, Euro. Patent 0, 624, 691
A1, 1993
[14] (a) M.D. Stewart, C.G. Willson, Imprint Materials for nanoscale
devices, MRS Bull 30 (2005) 947 ;
(b) M.D. Stewart, J.T. Wetzel, G.M. Schmid, F. Palmieri, E.
Thompson, E.K. Kim, D. Wang, K. Sotodoeh, K. Jen, S.C.
Johnson, J. Hao, M.D. Dickey, Y. Nishimura, R.M. Laine,
D.J. Resnick, C.G. Willson, Proc. SPIE-Int. Soc. Opt. Eng
5751 (2005) 219.
Acknowledgements
This work was supported by NSF through grant CGE
0740108 and in part by Canon Ltd, and Mayaterials Inc.
[15] (a) I. Hasegawa, S. Sakka, Y. Sugahara, K. Kuroda, C. Kato, J.
Chem. Soc., Chem. Commun. (1989) 208 ;
(b) I. Hasegawa, S. Moto-jima, J. Organomet. Chem 441 (1992)
373 ;
References
(c) I. Hasegawa, S. Sakka, Chem. Lett (1988) 1319.
[16] P.A. Agaskar, Inorg. Chem 30 (1991) 2707.
[17] (a) D. Hoebbel, K. Endres, T. Reinert, I. Pitsch, J. Noncryst. Sol
176 (1994) 179 ;
(b) D. Hoebbel, I. Pitsch, D. Heidmann, In: Eurogel’ 91, Else-
vier Sci. Publ., 1992, p. 467.
[18] M. Pach, R. Stösser, J. Phys. Chem. A 101 (1997) 8360.
[19] (a) B. Hong, T.P.S. Thoms, H.J. Murfee, H.J. Lebrun, Inorg.
Chem 36 (1997) 6146 ;
[1] P.E. Eaton, Angew. Chem. Int. Ed. Engl 31 (1992) 1421.
[2] S. Ahn, A.J. Matzger, J. Am. Chem. Soc. 131 (2009) 13826.
[3] K. Kim, K.E. Plass, A.J. Matzger, Langmuir 21 (2005) 647.
[4] A.L. Grzesiak, A.J. Matzger, Inorg. Chem., 46 (2007) 453.
[5] S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Inorg. Chem. 47
(2008) 7751.
[6] (a) F.J. Feher, R.L. Blanski, J. Am. Chem. Soc 114 (1992) 5886 ;
(b) F.J. Feher, D. Soulivong, A.G. Eklud, K.D. Wyndham,
Chem. Comm (1997) 1185 ;
(b) F.J. Feher, K.D. Wyndham, Chem. Comm (1998) 323 ;
(c) P.R. Dvornic, C. Hartmann-Thompson, S.E. Keinath, E.J.
Hill, Macromol 37 (2004) 7818.
(c) J.R. Severn, R. Ducha-teau, R.A. van Santen, D.D. Ellis,
A.L. Spek, Organomet 21 (2002) 4 ;
[20] (a) G.-M. Kim, H. Qin, X. Fang, F.C. Sun, P.T. Mather, J. Poly.
Sci. B-Polymer Physics 41 (2003) 3299 ;
(d) R. Duchateau, H.C.L. Abbenhuis, R.A. van Santen, A.
Meetsma, S.K.-H. Thiele, M.F.H. van Tol, Organomet 17
(1998) 5222.
(b) B.S. Kim, P.T. Mather, Macromol 35 (2002) 8378.
[21] (a) A.J. Waddon, E.B. Coughlin, Chem. Mater 15 (2003) 4555 ;
(b) G. Cardoen, E.B. Coughlin, Macromol 37 (2004) 5123.
[22] (a) B.X. Fu, B.S. Hsiao, H. White, M. Rafailovich, P. Mather,
H.G. Joen, S. Phillips, J. Lichtenhan, J. Schwab, Poly. Inter 49
(2000) 437 ;
[7] N. Maxim, P.C.M.M. Magusin, P.J. Kooyman, J.H.M.C. van
Wolput, R.A. van Santen, H.C.L. Abbenhuis, J. Phys. Chem. B
106 (2002) 2203.
[8] C. Bonhomme, P. Toledano, J. Maquet, J. Livage, L. Bonhomme-
Coury, J. Chem. Soc. Dalton Trans (1997) 1617.
[9] (a) A.R. Bassindale, M. Pourny, P.G. Taylor, M.B. Hursthouse,
M.E. Light, Angew. Chem. Inter. Ed 42 (2003) 3488 ;
(b) A.R. Bassindale, D.J. Parker, M. Pourny, P.G. Taylor, P.N.
Horton, M.B. Hursthouse, Organomet 23 (2004) 4400.
[10] A. Tsuchida, C. Bolln, F.G. Sernetz, H. Frey, R. Mülhaupt,
Macromol 30 (1997) 2818.
(b) B.X. Fu, W. Zhang, B.S. Hsiao, M. Rafailovich, J. Sokolov,
G. Johansson, B.B. Sauer, S. Phillips, R. Blanski, High Per-
formance Poly. 12 (2001) 565.
[23] H.C. Lin, S.W. Kuo, C.F. Huang, F.C. Chang, Macromol. Rapid
Comm 27 (2006) 537.
[24] (a) E.S. Baker, J. Gidden, S.E. Anderson, T.S. Haddad, M.T.
Bowers, Nano Lett 4 (2004) 779 ;
[11] (a) Reviews M.G. Voronkov, V.I. Lavrent’yev, Top. Curr. Chem,
102 (1982) 199 ;
(b) B.X. Fu, A. Lee, T.S. Haddad, Macromol 37 (2004) 5211 ;
(c) E.T. Kopesky, T.S. Haddad, R.E. Cohen, G.H. McKinley,
Macromol. 37 (2004) 8992.
(b) R.H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev
95 (1995) 1409 ;
[25] J.F. Brown, L.H. Vogt, P.I. Perescott, J. Am. Chem. Soc 86
(1964) 1120.
(c) A. Provatas, J.G. Matisons, Trends Polym. Sci 5 (1997) 327 ;
(d) D.A. Loy, K.J. Shea, Chem. Rev. 95 (1995) 1431 ;
(e) J. Lichtenhan, in : J.C. Salmone (Ed.), Polymeric. Materials
Encyc., 10, CRC Press, New York, 1996, p. 7768 ;
(f) R.M. Laine, J. Mater. Chem. 15 (2005) 3725 ;
(g) G. Calzaferri, in : R. Corriu, P. Jutzi (Eds.), Tailor made
silicon-oxygen compounds, from molecules to materials, Friedr.
Vieweg & Sohn mbH, Braunshweig/Weisbaden, Germany, 1996,
p. 149.
[26] C. Zhang, F. Babonneau, C. Bonhomme, R.M. Laine, C.L. Soles,
H.A. Hristov, A.F. Yee, J. Am. Chem. Soc 120 (1998) 8380.
[27] A. Sellinger, R.M. Laine, Macromol 29 (1996) 2327.
[28] J. Choi, J. Harcup, A.F. Yee, Q. Zhu, R.M. Laine, J. Am. Chem.
Soc 123 (2001) 11420.
[29] A. Sellinger, R.M. Laine, Chem. Mater 8 (1996) 1592.
[30] C. Zhang, R.M. Laine, J. Am. Chem. Soc 122 (2000) 6979.
[31] R.M. Laine, J. Choi, I. Lee, Adv. Mater 13 (2001) 800.
[32] C. Zhang, R.M. Laine, J. Organomet. Chem 521 (1996) 199.
[33] R. Tamaki, Y. Tanaka, M.Z. Asuncion, J. Choi, R.M. Laine, J.
Am. Chem. Soc 123 (2001) 12416.
[12] (a) J.D. Lichtenhan, H.Q. Vu, J.A. Carter, J.W. Gilman, F.J.
Feher, Macromol 26 (1993) 2141 ;
(b) J.W. Gilman, D.S. Schlitzer, J.D. Lichtenhan, J. Appl. Poly.
Sci 60 (1996) 591 ;
[34] R.O.R. Costa, W.L. Vasconcelos, R. Tamaki, R.M. Laine,
Macromol 34 (2001) 5398.
(c) R.I. Gonzalez, S.H. Phillips, G.B. Hoflund, J. Spacecraft and
Rockets 37 (2000) 463.
[35] R.M. Laine, C. Zhang, A. Sellinger, L. Viculis, J. Appl. Orga-
nometallic Chem 12 (1998) 715.
[13] (a) R. Weidner, N. Zeller, B. Deubzer, V. Frey, U.S. Patent 5,
047, 492 Sept. 1991 ;