C O M M U N I C A T I O N S
Scheme 3a
References
(1) (a) Erickson, K. L. Constituents of Laurencia. In Marine Natural
Products: Chemical and Biological PerspectiVes; Scheuer, P. J., Ed.;
Academic Press: New York, 1983; Vol. V, pp 131-257. (b) Dorta, A.;
D´ıaz-Marrero, A. R.; Cueto, M.; D’Croz, L.; Mate´, J. L.; Darias, J.
Tetrahedron Lett. 2004, 45, 7065-7068.
(2) Originally isolated from the marine alga Laurencia elata: Sims, J. J.;
Lin, G. H. Y.; Wing, R. M. Tetrahedron Lett. 1974, 15, 3487-3490.
(3) (a) Granado, I.; Caballero, P. Sci. Mar. 1995, 59 (Supl. 1), 31-39. (b)
de Nys, R.; Leya, T.; Maximilien, R.; Afsar, A.; Nair, P. S. R.; Steinberg,
P. D. Biofouling 1996, 10, 213-224. (c) Mart´ın, J. D.; Pe´rez, C.; Ravelo,
J. L. J. Am. Chem. Soc. 1986, 108, 7801-7811. (d) Vairappan, C. S.;
Daitoh, M.; Suzuki, M.; Abe, T.; Masuda, M. Phytochemistry 2001, 58,
291-297. (e) Vairappan, C. S. Biomol. Eng. 2003, 20, 255-259. (f) Ko¨nig,
G. M.; Wright, A. D. J. Nat. Prod. 1997, 60, 967-970. (g) HeLa: IC50
) 4.1 mM (lag phase), 1.3 mM (log phase); Hep-2: IC50 ) 2.4 mM (lag
phase), 2.0 mM (log phase); Dias, T.; Brito, I.; Moujir, L.; Paiz, N.; Darias,
J.; Cueto, M. J. Nat. Prod. 2005, 68, 1677-1679.
a Conditions: (a) HCO2H, Pd(OAc)2 (10 mol %), 18 (12.5 mol %), MS
4 Å, benzene, 40 °C, (b) Pd(dmdba)2 (10 mol %), 18 (13 mol %), benzene,
40 °C.
Scheme 4
(4) For the preparation of elatol (1) via the degradation of iso-obtusol, see:
(a) Gonza´lez, A. G.; Darias, J.; D´ıaz, A.; Fourneron, J. D.; Mart´ın, J. D.;
Pe´rez, C. Tetrahedron Lett. 1976, 17, 3051-3054. (b) Gonza´lez, A. G.;
Mart´ın, J. D.; Mart´ın, V. S.; Mart´ınez-Ripoll, M.; Fayos, J. Tetrahedron
Lett. 1979, 20, 2717-2718. (c) Gonza´lez, A. G.; Mart´ın, J. D.; Mart´ın,
V. S.; Norte, M.; Pe´rez, R. Tetrahedron Lett. 1982, 23, 2395-2398.
(5) For lead references on the total syntheses of other chamigrene natural
products, see: (a) Taber, D. F.; Sikkander, M. I.; Storck, P. H. J. Org.
Chem. 2007, 72, 4098-4101. (b) Srikrishna, A.; Lakshmi, B. V.; Mathews,
M. Tetrahedron Lett. 2006, 47, 2103-2106. (c) Chen, Y.-J.; Wang, C.-
Y.; Lin, W.-Y. Tetrahedron 1996, 52, 13181-13188. (d) Hatsui, T.; Wang,
J.-J.; Takeshita, H. Bull. Chem. Soc. Jpn. 1994, 67, 2507-2513. Also see
ref 3c.
(6) (a) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044-
15045. (b) Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M.
Angew. Chem., Int. Ed. 2005, 44, 6924-6927.
(7) Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.;
Schrodi, Y. Org. Lett. 2007, 9, 1589-1592.
(8) For the preparation of trisubstituted chloroalkenes via RCM, see: (a) Chao,
W.; Weinreb, S. M. Org. Lett. 2003, 5, 2505-2507. (b) Chao, W.; Meketa,
M. L.; Weinreb, S. M. Synthesis 2004, 2058-2061. For the preparation
of a fully substituted vinyl fluoride via RCM, see: (c) Marhold, M.; Buer,
A.; Hiemstra, H.; van Maarseveen, J. H.; Haufe, G. Tetrahedron Lett.
2004, 45, 57-60.
selectivity, providing vinylogous ester 12 in 82% yield and 87%
ee (Scheme 4). Gratifyingly, when R,ω-diene 12 was subjected to
our standard RCM reaction conditions with catalyst 22, the desired
fully substituted chloroalkene (+)-11 was produced in 97% yield.16
Addition of methyllithium in the presence of CeCl3 then provided
(+)-laurencenone B ((+)-7)17 after acid-mediated elimination and
hydrolysis.18 Enone (+)-7 was subsequently bis-halogenated with
Br2 to generate dibromide 10 in g8:1 dr.19 Finally, the crude
R-bromoketone 10 was doubly reduced with DIBAL to afford elatol
(1) (3.9:1 syn:anti,20 11:1 SN2′:SN2). Overall, enantioenriched (+)-
laurencenone B ((+)-7) was prepared in seven steps and 34% yield
from dimedone (14), while enantioenriched (+)-elatol (1) was
prepared in nine steps and 11% yield.21
We have successfully developed a concise enantioselective route
to the chamigrene natural product family, culminating in the first
total syntheses of elatol (1) and (+)-laurencenone B ((+)-7), as
well as the first preparation of a fully substituted chlorinated olefin
via RCM. Moreover, we have demonstrated the ability of the key
enantioselective alkylation reaction to access sterically encumbered
enantioenriched vinylogous esters. The application of these methods
to the syntheses of other chamigrene natural products and a full
exploration of both vinylogous esters in enantioselective decar-
boxylative alkylation and vinyl chlorides in RCM are the focus of
ongoing studies.
(9) Trost has recently reported the use of vinylogous ester and thioester
derivatives in enantioselective decarboxylative allylation using a chiral
bis(phosphine)-Pd(0) complex: Trost, B. M.; Bream, R. N.; Xu, J. Angew.
Chem., Int. Ed. 2006, 45, 3109-3112.
(10) House, H. O.; Fischer, W. F., Jr. J. Org. Chem. 1968, 33, 949-956.
(11) Use of Pd2(dba)3 in lieu of Pd(dmdba)2 led to significantly less conversion.
(12) For convenience, the enantioselective allylation reaction with 13 was
optimized in the opposite enantiomeric series.
(13) Mohr, J. T.; Nishimata, T.; Behenna, D. C.; Stoltz, B. M. J. Am. Chem.
Soc. 2006, 128, 11348-11349.
(14) A separate experiment revealed no reactivity in the absence of a Pd(0)
catalyst.
(15) For preliminary results on the rate acceleration of enantioselective
decarboxylative allylation of enol carbonates with electron-deficient PHOX
ligands, see: Tani, K.; Behenna, D. C.; McFadden, R. M.; Stoltz, B. M.
Org. Lett. 2007, 9, 2529-2531.
(16) (H2IMes)(PCy3)(Cl)2RudCHPh produced significant product for this
transformation under similar reaction conditions (2.5 mol% catalyst, C6D6,
60 °C), but at a slower rate than catalyst 22: 85% conversion after 24 h
as measured by 1H NMR .
(17) (a) For the isolation of laurencenone B (7) from the marine alga Laurencia
obtusa, see: Kennedy, D. J.; Selby, I. A.; Thomson, R. H. Phytochemistry
1988, 27, 1761-1766. Neither the absolute configuration nor the optical
rotation was specified. (b) For the preparation of (+)-laurencenone B ((+)-
7) via the degradation of elatol (1), see: Brennan, M. R.; Erickson, K. L;
Minott, D. A.; Pascoe, K. O. Phytochemistry 1987, 26, 1053-1057.
(18) Discrepancies between the published 1H NMR data for the natural product
(ref 17a) and that of the synthetic material exist. No 13C NMR data was
available for comparison. 1H and 13C NMR data for semisynthetic (+)-
laurencenone B ((+)-7) (ref 17b) matched that of our synthetic material.
See the supporting information for a detailed comparison.
(19) Purification of R-bromoketone 10 was hampered by its poor stability to
silica gel and reverse phase HPLC.
(20) Determined by quenching the reaction at -78 °C in a separate run, result-
ing in the isolation a 3.9:1 mixture of alcohol diastereomers favoring i.
Acknowledgment. We thank the NIH-NIGMS (R01 GM080269-
01, R01 GM31332-05, postdoctoral fellowships to D.E.W. and
I.C.S.), Abbott, Amgen, Bristol-Myers Squibb, Merck, and Caltech
for generous funding; Materia, Inc. for their kind donation of
catalyst 22 used in these studies; Professors Mercedes Cueto and
Karen L. Erickson for their kind donation of natural samples of
elatol (1); Brinton Seashore-Ludlow for experimental assistance;
and Professor Peter B. Dervan and David M. Chenoweth for use
of their HPLC.
(21) Synthetic (+)-elatol ((+)-1) was identical in all respects to a natural sample
provided by Prof. Mercedes Cueto except for the magnitude of its optical
rotation: [R]23 +92.09° (c 0.22, CHCl3, synthetic), [R]25 +109.78° (c
0.045, CHCl3, Dnatural). Based on 87% ee, the expected [R]DD value for the
synthetic material would be +95.5°, which differed from the observed
value by 3.6%.
Supporting Information Available: Experimental details. This
JA710294K
9
J. AM. CHEM. SOC. VOL. 130, NO. 3, 2008 811