Mono- or Diplatinum Complexes with a π-Conjugated Pentadiynyl Ligand
(dd, J = 8.4, 7.2 Hz, 1 H, Ph), 7.08–7.12 (m, 6 H, Ph), 7.17–7.41
(m, 24 H, Ph), 7.44–7.49 (m, 6 H, Ph), 7.53–7.57 (m, 6 H, Ph), 7.70
C), 127.8–132.0 (m, Ph), 133.7–135.0 (m, Ph) ppm. M.p. 147.9–
149.3 °C (decomp.). C83H68Cl2P4Pt2 (1650.40): calcd. C 60.40, H
(t, J = 7.2 Hz, 3 H, Ph) ppm. 31P{1H} NMR (242.95 MHz, CDCl3): 4.15; found C 60.40, H 4.40. Single crystals of 10 for X-ray diffrac-
δ = 4.2 (t, JPP = 26.6 Hz, JPPt = 604.6 Hz, CPPh3), 21.0 (dd, JPP
26.6, 8.7 Hz, JPPt = 2517.8 Hz, PtPPh3), 22.3 (dd, JPP = 26.6,
8.7 Hz, JPPt
2156.7 Hz, PtPPh3) ppm. 13C{1H} NMR
(125.77 MHz, CDCl3): δ = –5.5 (dd, JCP = 76.3, 4.8 Hz, JPPt
365.4 Hz, CH2), 89.1 (q, JCP = 5.6 Hz, 1 C), 115.9 (d, JCP = 5.8 Hz,
JCPt = 37.6 Hz, 1 C), 120.9 (q, JCF = 319.5 Hz, CF3), 122.3 (s, Ph),
127.1–130.0 (m, Ph), 130.1 (dd, JCP = 22.0, 1.9 Hz, 1 C), 149.3 (d,
JCP = 115.4 Hz, JCPt = 598.0 Hz, 1 C) ppm. M.p. 161.4–165.5 °C
(decomp.). C66H52F3O3P3PtS (1270.18): calcd. C 62.41, H 3.78;
found C 62.29, H 4.04.
=
tion analysis were obtained by slow diffusion of hexane into a con-
centrated CH2Cl2 solution of 10.
=
Crystal Data for 10: C83H68Cl2P4Pt2, M = 1650.43, colorless, tri-
clinic, a = 13.6897(7) Å, b = 16.8795(9) Å, c = 20.2072(12) Å, α =
70.8631(16)°, β = 78.6225(15)°, γ = 81.8964(15)°, V = 4309.9(4) Å3,
=
¯
T = 153Ϯ1 K, space group P1 (#2), Z = 2, µ(Mo-Kα) =
34.019 cm–1, 33945 reflections measured, 15498 independent reflec-
tions (Rint = 0.058). The final R1 values were 0.0719 [IϾ2σ(I)]. The
final wR(F2) values were 0.0896 [IϾ2σ(I)]. The goodness of fit on
F2 was 0.979. CCDC-690680 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
Reaction of 1a with Pt(C2H4)(PPh3)2: The reactions were carried
out in each solvent similarly to the reaction of 1a with
Pt(C2H4)(PPh3)2. The results are summarized in Scheme 7. cis-
(PPh3)2PtCl[η1-CH2CϵC{(PPh3)2Pt(η2-CϵCPh)}] (7) and (PPh3)2-
Pt[η2-CH2C{(PPh3)2PtCl}C(CϵCPh)] (8) gradually decomposed in
solution. Thus they cannot be isolated. Data for 7: 1H NMR
(500.16 MHz, C6D6): δ = 2.84 (br. s, JHPt = 66.5 Hz, 2 H, CH2)
Acknowledgments
ppm. 31P{1H} NMR (202.46 MHz, C6D6): δ = 18.6 (d, JPP
=
This work was supported in part by a Grant-in-Aid for Scientific
Research on Priority Areas (Reaction Control of Dynamic Com-
plexes) from the Ministry of Education, Culture, Sports, Science,
and Technology, Japan (No. 15036247 and 16033243). We are
grateful to Professor Hideo Kurosawa and Professor Sensuke Ogo-
shi of Osaka University for their valuable suggestions. We also
thank Mr. Fumio Asanoma and Mr. Shouhei Katao for assistance
in obtaining elementary analysis data.
16.7 Hz, JPPt = 4529.1 Hz, PPh3), 21.3 (dd, JPP = 16.7, 5.6 Hz, JPPt
= 1790.1 Hz, PPh3), 26.9 (dd, JPP = 31.6, 5.6 Hz, JPPt = 3490.7 Hz,
PPh3), 27.8 (d, JPP = 31.6 Hz, JPPt = 3449.8 Hz, PPh3) ppm. Data
for 8: 1H NMR (500.16 MHz, CDCl3): δ = –0.42 (br. s, JHPt
=
82.5 Hz, 2 H, CH2), 6.35 (d, JHH = 7.4 Hz, 2 H, Ph), 6.73 (dd, JHH
= 7.4, 7.3 Hz, 2 H, Ph), 6.83 (t, JHH = 7.3 Hz, 1 H, Ph) ppm.
31P{1H} NMR (202.46 MHz, CDCl3): δ = 22.4 (d, JPP = 3.7 Hz,
JPPt = 1953.8 Hz, PPh3), 24.4 (d, JPP = 3.7 Hz, JPPt = 2318.5 Hz,
PPh3), 25.6 (br. s, JPPt = 3648.9, 63.3 Hz, PPh3) ppm.
[1] Selected recent reviews: a) B. Brenet, A. Vasella in Acetylene
Chemistry: Chemistry, Biology, and Material Science (Eds.: F.
Diederich, P. J. Stang, R. R. Tykwinski), Wiley-VCH,
Weinheim, 2005, pp. 173–231; b) Y. Tobe, T. Wakabayashi in
Acetylene Chemistry: Chemistry, Biology, and Material Science
(Eds.: F. Diederich, P. J. Stang, R. R. Tykwinski), Wiley-VCH,
Weinheim, 2005, pp. 387–426; c) M. Kijima in Polyynes: Syn-
thesis Properties, and Applications (Ed.: F. Cataldo), Taykor &
Francis Group, 2006, ch. 10, pp. 197–217; d) A. L. K. S. Shun,
R. R. Tykwinski, Angew. Chem. Int. Ed. 2006, 45, 1034–1057.
[2] Reviews of propargyl/allenyl metal complexes: a) S. Doherty,
J. F. Corrigan, A. J. Carty, E. Sappa in Advances in Organome-
tallic Chemistry (Eds.: F. G. A. Stone, R. West), Academic
Press, 1995, vol. 37, pp. 39–130; b) A. Wojcicki, C. E. Shuchart,
Coord. Chem. Rev. 1990, 105, 35–60; J.-T. Chen, Coord. Chem.
Rev. 1992, 190–192, 1143–1168; c) A. Wojcicki, New J. Chem.
1994, 18, 61–68; d) H. Kurosawa, S. Ogoshi, Bull. Chem. Soc.
Jpn. 1998, 71, 973–984; e) A. Wojcicki, Inorg. Chem. Commun.
2002, 5, 82–97.
Reaction of 5 with HCl: Pt(PPh3)4 (74.7 mg, 0.060 mmol) was
added to a dry solution of 1a (10.5 mg, 0.060 mmol) in CDCl3
(0.6 mL) at room temperature. After 10 min, 5 was observed in
90% NMR yield. Then, Me3SiCl (7.8 mg, 0.072 mmol) and H2O
(ca. 1 µL) were added to the NMR tube. After 3.0 min, [(PPh3)2-
PtCl{η1-C(CϵCPh)=C(PPh3)CH3}]+Cl– (9) was generated in 92%
NMR yield based on 5. Complex 9 was not isolated because of the
1
low stability in solution. H NMR (500.16 MHz, CDCl3): δ = 2.14
(br. s, JHPt = 67.2 Hz, 3 H, CH3), 6.57 (d, J = 7.3 Hz, 2 H, Ph),
7.05–7.75 (m, 48 H, Ph) ppm. 31P{1H} NMR (202.46 MHz,
CDCl3): δ = 19.0 (d, JPP = 31.6 Hz, JPPt = 145.1 Hz, CPPh3), 20.3
(d, JPP = 16.7 Hz, JPPt = 4252.3 Hz, PtPPh3), 23.0 (dd, JPP = 31.6,
16.7 Hz, JPPt = 1731.3 Hz, PtPPh3) ppm.
Reaction of 8 with HCl: Pt(C2H2)(PPh3)2 (59.9 mg, 0.0801 mmol)
was added to a solution of diynylchloride 1a (7.0 mg, 0.040 mmol)
in degassed dry CDCl3 (0.6 mL) at room temperature. After
10 min, 8 was observed in 54% NMR yield. Then, Me3SiCl
(5.2 mg, 0.048 mmol) and H2O (ca. 1 µL) were added to the NMR
tube. After 30 min, [(PPh3)2Pt{η3-CH2C{cis-(PPh3)2PtCl}CH-
(CϵCPh)}]+Cl– (10) was generated in 70% NMR yield based on
8. The volatiles were removed under vacuum, yielding a yellow oil.
This material was washed with hexane and Et2O and then recrys-
tallized from CH2Cl2 and hexane to give an off-white solid of 10
(21.7 mg, 33%). 1H NMR (500.16 MHz, CDCl3): δ = 2.23 (m, JHPt
= 41.5 Hz, 1 H, CH), 3.20 (m, JHPt = 53.0 Hz, 1 H, CH), 3.58 (br.
s, 1 H, CH), 6.95–7.12 (m, 20 H, Ph), 7.19–7.48 (m, 15 H, Ph) ppm.
31P{1H} NMR (202.46 MHz, CDCl3): δ = 14.6 (d, JPP = 18.6 Hz,
[3] Y. Takahashi, K. Tsutsumi, Y. Nakagai, T. Morimoto, K. Kak-
iuchi, S. Ogoshi, H. Kurosawa, Organometallics 2008, 27, 276–
280.
[4] η1-Propargyl or allenyl mononuclear complexes (AЈ, BЈ): a) J. P.
Collman, J. N. Cawse, J. W. Kang, Inorg. Chem. 1969, 8, 2574–
2579; b) B. E. Mann, B. L. Shaw, N. I. Tucker, J. Chem. Soc. A
1971, 2667–2673; c) C. J. Elsevier, H. Kleijn, K. Ruitenberg, P.
Vermeer, J. Chem. Soc., Chem. Commun. 1983, 1529–1530; d)
C. J. Elsevier, H. Kleijn, J. Boersma, P. Vermeer, Organometal-
lics 1986, 5, 716–720; e) J. M. A. Wouters, R. A. Klein, C. J.
Elsevier, Organometallics 1994, 13, 4586–4593.
[5] µ-η3-propargyl/allenyl dipalladium complexes (CЈ): a) S. Ogo-
shi, K. Tsutsumi, M. Ooi, H. Kurosawa, J. Am. Chem. Soc.
1995, 117, 10415–10416; b) S. Ogoshi, T. Nishida, K. Tsutsumi,
M. Ooi, T. Shinagawa, T. Akasaka, M. Yamane, H. Kurosawa,
J. Am. Chem. Soc. 2001, 123, 3223–3228.
JPPt = 1787.8, 39.0 Hz, PPh3), 15.2 (d, JPP = 11.2 Hz, JPPt
=
3995.2 Hz, PPh3), 16.4 (d, JPP = 11.2 Hz, JPPt = 4004.6 Hz, PPh3),
17.7 (d, JPP = 18.6 Hz, JPPt = 4182.8, 48.3 Hz, PPh3) ppm. 13C{1H}
NMR (125.77 MHz, CDCl3): δ = 67.6 (d, JCP = 35.4 Hz, JCPt
=
[6] Type AЈ, BЈ, and DЈ: P. W. Blosser, D. G. Schimpff, J. C. Gal-
lucci, A. Wojcicki, Organometallics 1993, 12, 1993–1995.
95.0 Hz, 1 C), 77.6 (s, CH2), 86.6 (s, 1 C), 93.6 (s, 1 C), 123.7 (s, 1
Eur. J. Inorg. Chem. 2010, 2361–2368
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
2367