I. Abrunhosa-Thomas et al. / Tetrahedron 66 (2010) 4434e4440
4439
(d, JCOCP¼9.0 Hz), 63.9 (d, JCOCP¼8.0 Hz), 21.3 (dt, JFCC¼22.0 Hz,
JPCC¼13.5 Hz), 16.8 (d, JCCOP¼5.0 Hz), 15.4, 15.3; 31P NMR
(s); 19F NMR (282.3 MHz, CDCl3)
d
: ꢀ133.6 (dd, JFCF¼285.5 Hz,
JFCH¼56.5 Hz), ꢀ132.0 (dd, JFCF¼285.5 Hz, JFCH¼56.5 Hz); HRMS
(121.47 MHz, CDCl3)
d
: 25.84 (t, JPCF¼93.5 Hz); 19F NMR (282.3 MHz,
(ESI) calcd for C15H29F2NaO5P, ([M]þ) 381.1618, found 381.1617.
CDCl3)
d
: ꢀ104.0 (dq, JFCP¼93.5 Hz, JFCH¼22.0 Hz); HRMS (Chem
Ion) calcd for C9H19F2O4P, ([MþH]þ) 261.1067, found 261.1069.
Acknowledgements
4.6. Representative procedure for the alkylation of 2 (Table 5,
Eq. 4): difluoromethyl-(1-methyl-octyl)-phosphinic acid
butyl ester
We thank the National Institute of General Medical Sciences/
NIH (1R01 GM067610) for the financial support of this research.
Supplementary data
Difluoromethyl-octyl-phosphinic acid butyl ester 2 (0.426 g,
1.5 mmol) was placed under vacuum in a dry two-neck flask 10 min
before use. Anhydrous THF (5.0 mL, 0.3 M) was then added under
N2. The flask was cooled to ꢀ78 ꢁC and deoxygenated under vac-
uum for 5 min. The reaction flask was back-filled with N2, then
t-BuLi (1.7 M in pentane, 1.0 mL, 1.65 mmol, 1.1 equiv) was added
at ꢀ78 ꢁC. After 30 min, iodomethane (0.1 mmol, 1.65 mmol,
1.1 equiv) was added under N2. After addition, the temperature of
the solution was kept at ꢀ78 ꢁC for 30 min, then slowly allowed to
warm to rt over 1 h. The reaction mixture was quenched with
saturated solution of NH4Cl/brine (10 mL). The aqueous layer was
extracted with ethyl acetate (3ꢂ). The combined organic layer was
dried over anhydrous MgSO4 and concentrated. The resulting oil
was purified by column chromatography over silica (hexanes/ethyl
acetate, 8/2, v/v) to afford the product as a slightly yellow oil
Additional experimental and spectral data are provided. Sup-
plementary data associated with this article can be found, in the
MOL files and InChIKeys of the most important compounds
described in this article.
References and notes
1. For representative and general references, see: (a) O’Hagan, D. Chem. Soc. Rev.
2008, 37, 308; (b) Bégué, J.-P.; Bonnet-Delphon, D. Bioorganic and Medicinal
Chemistry of Fluorine; Wiley: Hoboken, NJ, 2008; (c) Romanenko, V. D.; Kukhar,
V. P. Chem. Rev. 2006, 106, 3868; (d) Lequeux, T. P. General Methods for the
Synthesis of Difluoromethylphosphonates In Fluorine-Containing Synthons. ACS
Symposium Series; 2005; Vol. 911, Chapter 26, pp 440e455; (e) Modern Fluo-
roorganic Chemistry; Kirsch, P., Ed.; Wiley-VCH: Weinheim, Germany, 2004; (f)
Savignac, P.; Iorga, B. Modern Phosphonate Chemistry; CRC: Boca Raton, FL, 2003.
2. Deprèle, S.; Montchamp, J.-L. J. Org. Chem. 2001, 66, 6745.
3. (a) Gautier, A.; Garipova, G.; Salcedo, C.; Balieu, S.; Piettre, S. R. Angew. Chem.,
Int. Ed. 2004, 43, 5963; (b) Our own studies using NaH2PO2 and Et3B/air on 1,1-
difluoro-2-monosubstituted olefins (unpublished results) showed that the re-
gioselectivity is poor (and small amounts of partially defluorinated products
also form). Thus, the use of R2C]CF2 appears important to form the tertiary
radical intermediate for complete regioselection (formation of PeCF2). There-
fore the present/Hall reaction provides a competing alternative to free radical
approaches.
4. (a) Froestl, W.; Mickel, S. J.; Hall, R. G.; von Sprecher, G.; Diel, P. J.; Strub, D.;
Baumann, P. A.; Brugger, F.; Gentsch, C.; Jaekel, J.; Olpe, H.-R.; Rihs, G.; Vassout,
A.; Waldmeier, P. C.; Bittiger, H. J. Med. Chem. 1995, 38, 3297; (b) Froestl, W.;
Mickel, S. J.; von Sprecher, G.; Diel, P. J.; Hall, R. G.; Maier, L.; Strub, D.; Melillo,
V.; Baumann, P. A.; Bernasconi, R.; Gentsch, C.; Hauser, K.; Jaekel, J.; Karlsson,
G.; Klebs, K.; Maitre, L.; Marescaux, C.; Pozza, M. F.; Schmutz, M.; Steinmann,
M. W.; van Riezen, H.; Vassout, A.; Mondadori, C.; Olpe, H.-R.; Waldmeier, P. C.;
Bittiger, H. J. Med. Chem. 1995, 38, 3313.
(0.79 g, 85%). Two diastereosisomers 1H NMR (300 MHz, CDCl3)
d:
6.03 (td, 1H, JHCF¼48.5 Hz, JHCP¼23.5 Hz, PeCF2H), 4.12e4.32 (m,
2H, eCH2eOeP), 2.01 (m, 1H, PeCHeCH2e), 1.67e1.85 (m, 3H,
PeCeCH3), 1.20e1.51 (m, 16H, eCH2e), 0.89e1.00 (m, 6H,
eCH2eCH3ꢂ2); 13C NMR (75.45 MHz, CDCl3)
d: 113.9 (2td,
JCF¼263.0 Hz, JCP¼122.0 Hz), 66.4 (2d, JCOP¼7.0 Hz), 32.7 (d,
JCCOP¼5.0 Hz), 31.8, 30.2 (d, JCP¼95.0 Hz) and 30.1 (d, JCP¼94.5 Hz),
29.3, 29.1, 28.2, 27.1 (2d, JCCP¼12.0 Hz), 22.6, 18.7, 14.1, 13.6, 11.6 (d,
JCCP¼14.5 Hz); 31P NMR (121.47 MHz, CDCl3)
d:
42.14 (t,
JPCF¼72.0 Hz), 41.75 (t, JPCF¼70.5 Hz); 19F NMR (282.3 MHz, CDCl3)
d
: ꢀ135.2 to ꢀ134.4 (m); HRMS (EI) calcd for C14H29F2O2P, ([M]þ)
298.1873, found 298.1875.
4.7. Representative procedure for the rearrangement with
carbonyl compounds (Table 6, entry 1): (1,1-diethoxy-ethyl)-
phosphonic acid 1-difluoromethyl-cyclohexyl ester ethyl ester
5. Abrunhosa-Thomas, I.; Sellers, C. E.; Montchamp, J.-L. J. Org. Chem. 2007, 72,
2851.
6. The ease of oxidation of P(III) compounds with oxygen is well-known. See for
example: (a) Lee, K.; Wiemer, D. F. J. Org. Chem. 1991, 56, 5556; (b) Fougère, C.;
Guénin, E.; Hardouin, J.; Lecouvey, M. Eur. J. Org. Chem. 2009, 6048.
7. Calculations were performed using the Spartan 08 molecular modeling soft-
ware (Wavefunction, Inc.). Although these are gas-phase computations, it is
reasonable to expect similar solvation of anions A and B. For interesting ref-
erences concerning conformational effects in phosphorus compounds, see: (a)
Thatcher, G. R. J.; Campbell, A. S. J. Org. Chem. 1993, 58, 2272; (b) Stewart, E. L.;
Nevins, N.; Allinger, N. L.; Bowen, J. P. J. Org. Chem. 1999, 64, 5350; (c) Grein, F. J.
Mol. Struct. (Theochem) 2001, 536, 87; (d) Vereshchagina, Y. A.; Ishmaeva, E. A.;
Zverev, V. V. Russ. Chem. Rev. 2005, 74, 297.
(1,1-Diethoxy-ethyl)-difluoromethyl-phosphinic acid ethyl ester
3 (0.52 g, 2.0 mmol) was placed under vacuum in a dry two-neck
flask 10 min before use. Anhydrous THF (6.7 mL, 0.3 M) was then
added under N2. The flask was cooled to ꢀ78 ꢁC and deoxygenated
under vacuum for 5 min. The reaction flask was back-filled with N2,
then t-BuLi (1.7 M in pentane, 1.3 mL, 2.2 mmol, 1.1 equiv) was
added at ꢀ78 ꢁC. After 30 min, cyclohexanone (2.2 mmol, 1.1 equiv)
was added under N2. After addition, the temperature of the solution
was kept at ꢀ78 ꢁC for 10 min, then slowly allowed to warm to 0 ꢁC
over 2 h. The reaction mixture was quenched with brine (10 mL).
The aqueous layer was extracted with ethyl acetate (3ꢂ). The
combined organic layer was dried over anhydrous MgSO4 and
concentrated. The crude oil was purified by chromatography over
silica (hexanes/ethyl Acetate, 8/2, v/v) to afford the product as
8. The preference for antiperiplanar CeF in carbonyl compounds is well known.
See for example Ref. 1a and references cited therein. In anions A1eA3, one of
the CeF bonds is always antiperiplanar to P]O.
9. Tossell, J. A. Environ. Sci. Technol. 2009, 43, 2575.
10. For an interesting reference on the regioselective functionalization of R1CH2P(O)
(R)CH2R2, see: Pietrusiewicz, K. M.; Zablocka, M. Tetrahedron Lett. 1982, 30, 477.
11. (a) Obayashi, M.; Ito, E.; Matsui, K.; Kondo, K. Tetrahedron Lett. 1982, 23, 2323;
(b) Obayashi, M.; Kondo, K. Tetrahedron Lett. 1982, 23, 2327.
12. (a) Kitazume, T.; Lin, J. T.; Takeda, M.; Yamazaki, T. J. Am. Chem. Soc. 1991, 113,
2123; (b) Sawa, M.; Kondo, H.; Nishimurab, S.-i Bioorg. Med. Chem. Lett. 2002,
12, 581; (c) Sawa, M.; Tsukamoto, T.; Kiyoi, T.; Kurokawa, K.; Nakajima, F.;
Nakada, Y.; Yokota, K.; Inoue, Y.; Kondo, H.; Yoshino, K. J. Med. Chem. 2002, 45,
930; (d) Nifant’ev, E. E.; Belov, S. P.; Komlev, I. V.; Petukhov, V. A.; Semenov, M.
A.; Mezentseva, G. A.; Tavrizova, M. A.; Ponomareva, O. V. Russ. J. Gen. Chem.
2008, 78, 383.
13. For example, see: (a) Rodan, G. A. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 375;
(b) Mundy, G. R. Annu. Rev. Med. 2002, 53, 337; Annu. Rev. Med. 2002, 53, 537;
(c) Prestwood, K. M.; Pilbeam, C. C.; Raisz, L. G. Annu. Rev. Med. 1995, 46, 249;
(d) Fleisch, H. Bisphosphonates in Bone Disease; Academic: San Diego, CA, 2000;
(e) Bisphosphonate on Bones; Bijvoet, O. L. M., Fleisch, H. A., Canfield, R. E.,
Russell, R. G. G., Eds.; Elsevier: Amsterdam, 1995; (f) Fleisch, H. Drugs 1991,
42, 919.
a slightly yellow oil (0.61 g, 80% yield). 1H NMR (300 MHz, CDCl3)
d:
6.19 (t, 1H, JHCF¼56.5 Hz, eCF2H), 4.22 (m, 2H, eCH2eOeP),
3.64e3.76 (m, 4H, eCH2eOeCePꢂ2), 2.05e2.18 (m, 2H, eCHeꢂ2),
1.53e1.80 (m, 8H, eCHe), 1.55 (d, JHCP¼12.0 Hz, CH3eCeP), 1.34 (t,
J¼7.0 Hz, CH3eCeOeP), 1.21 (t, J¼7.0 Hz, CH3eCeOeC), 1.20 (t,
J¼7.0 Hz, CH3eCeOeC); 13C NMR (75.45 MHz, CDCl3)
d: 117.0 (d,
JCF¼248.0 Hz), 100.4 (d, JCP¼214.0 Hz), 84.3 (td, JCCF¼20.5 Hz,
JCOP¼10.0 Hz), 63.8 (d, JCOP¼7.0 Hz), 58.4 (d, JCOCP¼6.5 Hz), 57.9 (d,
JCOCP¼9.0 Hz), 29.9, 29.1, 25.3, 21.2 (d, JCCP¼10.0 Hz), 20.8, 20.7, 16.6
(d, JCCOP¼5.5 Hz), 15.6, 15.4; 31P NMR (121.47 MHz, CDCl3)
d: 15.49