A. Ollivier et al. / Tetrahedron Letters 51 (2010) 4147–4149
4149
Table 2
13C and 1H NMR data for 12c isomers
O
O
12
HN
HN
O
O
9
8
10
11
7
(2S,5S,8S)-12c
(2S,5R,8S)-12c
O
O
O
4
5
O
2
3
OTBDPS
OTBDPS
13
dH, J in Hz
dC
dH, J in Hz
dC
2
3
4.18, dq (8.0, 4.5)
1.68, m
78.9
26.9
4.21, q (6.5)
1.67, m
80.5
27.8
2.01, ddt (14.5, 11.5, 8.5)
1.51, dt (11.0, 8.0)
1.91, m
4
38.0
1.16, m
1.69, m
38.2
5
7
110.8
65.5
110.5
63.7
3.60, m
3.47, dd (11.5, 10.0)
3.91, m
3.11, br d (12.5)
3.53, d (13.0)
3.81, m
8
9
51.31
36.2
49.6
35.6
1.66, m
1.08, m
0.95, m
1.23, m
1.40, m
1.70, m
1.91, br d (13.5)
1.19, m
10
11
20.4
38.3
19.2
38.5
1.60, dd (15.0, 7.5)
1.76, dd (15.0, 11.5)
5.29, d (8.5)
3.53, dd (10.0, 5.5)
3.78, dd (10.0, 6.5)
1.46, s
1.91, m
12
13
4.26, br d (8.0)
3.68, dd (10.5, 4.0)
3.58, dd (10.5, 4.5)
1.43, s
66.7
68.7
N-Boc
155.0, 78.6, 28.5
19.6, 27.1
155.0, 78.5, 28.6
Si-tBu
1.15, s
1.17, s
47% yield) as a 1/1 separable mixture of the two spiranic epimers.
Our approach allowed the introduction of substitutions on the b
and
c positions relative to the spiranic center, using simple iodides
or epoxide precursors. Extension to the synthesis of others spiroke-
tals will be reported in due course.
References and notes
1. (a) Perron, F.; Albizati, K. F. Chem. Rev. 1989, 89, 1617; (b) Jacobs, M. F.;
Kitching, W. Curr. Org. Chem. 1998, 2, 395; (c) Francke, W.; Schröder, W. Curr.
Org. Chem. 1999, 3, 407; (d) Francke, W.; Kitching, W. Curr. Org. Chem. 2001, 5,
233.
2. (a) Faul, M. M.; Huff, B. E. Chem. Rev. 2000, 100, 2407; (b) Mead, K. T.; Brewer, B.
N. Curr. Org. Chem. 2003, 7, 227; (c) Aho, J. E.; Pihko, P. M.; Rissa, T. K. Chem. Rev.
2005, 105, 4406.
3. For recent examples of synthesis of these systems, see: (a) Aponick, A.; Li, C. Y.;
Palmes, J. A. Org. Lett. 2009, 11, 121; (b) Selvaratnam, S.; Ho, J. H. H.; Huelatt, P.
B.; Messerle, B. A.; Chai, C. L. L. Tetrahedron Lett. 2009, 50, 1125; (c) Liu, G.;
Wurst, J. M.; Tan, D. S. Org. Lett. 2009, 11, 3670; (d) Aponick, A.; Li, C.-Y.;
Palmes, J. A. Org. Lett. 2009, 11, 121; (e) de Greef, M.; Zard, S. Z. Org. Lett. 2007,
9, 1773; (f) Moilanen, S. B.; Potuzak, J. S.; Tan, D. S. J. Am. Chem. Soc. 2006, 128,
1792; (g) Doubsky, J.; Streinz, L.; Saman, D.; Zednik, J.; Koutek, B. Org. Lett.
2004, 6, 4909; (h) Ghosh, S. K.; Hsung, R. P.; Wang, J. Tetrahedron Lett. 2004, 45,
5505; (i) Bez, G.; Bezbarua, M. S.; Saikia, A. K.; Barua, N. C. Synthesis 2000, 537;
(j) Nakamura, K.; Kitayama, T.; Inoue, Y.; Ohno, A. Tetrahedron 1990, 46, 7471.
4. For a review of the use of N,N-dialkylhydrazones in organic synthesis see: (a)
Lazny, R.; Nodzewska, A. Chem. Rev. 2010, 110, 1366; For some recent
applications in spiroketals synthesis see: (b) Dias, L. C.; de Oliveira, L. G. Org.
Lett. 2004, 6, 2587; (c) Panek, J. S.; Jain, N. F. J. Org. Chem. 2001, 66, 2747.
5. Tursun, A.; Canet, I.; Aboab, B.; Sinibaldi, M.-E. Tetrahedron Lett. 2005, 46, 2291.
6. Goubert, M.; Canet, I.; Sinibaldi, M.-E. Eur. J. Org. Chem. 2006, 4805.
7. Kadota, I.; Saya, S.; Yamamoto, Y. Heterocycles 1997, 46, 335.
8. Compounds 7a,b were prepared from their monosilylated alcohol (Mac Dougal,
P. G.; Rico, J. G.; Oh, Y.-I.; Condon, B. D. J. Org. Chem. 1986, 51, 3388).
Spectroscopic data were in accordance with those reported by Paquette, L. A.;
Doherty, A. M.; Rayner, C. M. J. Am. Chem. Soc. 1992, 114, 3910 for 8a, by
Dawson, I. M.; Gregory, J. A.; Herbert, R. B.; Sammes, P. G. J. Chem. Soc. Perkin
Trans. 1 1988, 2585 for 8b.
9. (a) Nicolaou, K. C.; He, Y.; Vourloumis, D.; Valberg, H.; Roschangar, F.; Sarabia,
F.; Ninkovic, S.; Yang, Z.; Trujilla, J. I. J. Am. Chem. Soc. 1997, 34, 7960; For ring
opening of epoxide by N,N-dimethylhydrazones see: (b) Evans, D. A.; Bender, S.
L.; Morris, J. J. Am. Chem. Soc. 1988, 110, 2506.
Figure 1. ORTEP of 12b.
11b in good yields. In a same manner, the attack of the anion of
hydrazone 7 on epoxide 99 permitted its ring opening, leading di-
rectly to the keto-diol 11c in 43% yield.
Finally, p-TsOH/MeOH mediated deprotection-spirocyclization
of 11a,b,c afforded, as the sole cleanly isolated derivatives, 1,6-
dioxaspiro[4.6]undecanes 12a,c and 1,7-dioxaspiro[5.6]dodecane
12b (Scheme 2). In an attempt to increase the formation of these
spirocyclic compounds, we modified the nature of the acid. Treat-
ment of 11 by HCl/methanol or AmberlystÒ 15 led unfortunately to
degradation of the reaction mixture. Conversely, the use of
Yb(OTf)3 in CH3CN revealed efficient3d and gave nearly quantita-
tively and exclusively the spirocyclic epimers 12 in a 1/1 ratio.
These diastereomers could be cleanly separated on neutral alu-
mina and fully characterized (Tables 1 and 2). Furthermore, in the
spiro[5.6] series, if the (6R,9S)-isomer of 12b occurred as an oil, its
(6S,9S) epimer could be obtained as a fine white powder easily
recrystallized from ethanol. Its structure and the relative stereo-
chemistry of the spiranic center were then confirmed by an X-
ray crystallographic analysis as shown as ORTEP plot in Figure 1.10
In summary, we demonstrated here the efficiency of our strat-
egy to prepare in a few steps and good yields the 1,6-dioxaspi-
ro[4.6]undecanes 12a,c (five steps, 41% yield for 12a; four steps,
39% yield for 12c) and 1,7-dioxaspiro[5.6]dodecane 12c (five steps,
10. The crystal structure has been deposited at the Cambridge Crystallographic
Data Centre and allocated the deposition number CCDC 720349.