3500
A. L. Hurski, O. G. Kulinkovich / Tetrahedron Letters 51 (2010) 3497–3500
6. For reviews, see: (a) Nicolaou, K. C.; Roschangar, F.; Vourloumis, D. Angew.
Chem. 1998, 110, 2120. Angew. Chem., Int. Ed. Engl. 1998, 37, 2014; (b) Harris, C.
R.; Danishefsky, S. J. J. Org. Chem. 1999, 64, 8434; (c) Mulzer, J.; Martin, H. J.;
Berger, M. J. Heterocycl. Chem. 1999, 36, 1421; (d) Nicolaou, K. C.; Ritzen, A.;
Namoto, K. Chem. Commun. 2001, 1523; (e) Altmann, K.-H. Org. Biomol. Chem.
2004, 2, 2137; (f) Watkins, E. B.; Chittiboyina, A. G.; Jung, J. C.; Avery, M. A. Curr.
Pharm. Des. 2005, 11, 1615; (g) Watkins, E. B.; Chittiboyina, A. G.; Avery, M. A.
Eur. J. Org. Chem. 2006, 4071; (h) Altmann, K.-H.; Pfeiffer, B.; Arseniyadis, S.;
Pratt, B. A.; Nicolaou, K. C. Chem. Med. Chem. 2007, 2, 396; (i) Feyen, F.; Cachoux,
F.; Gertsch, J.; Wartmann, M.; Altmann, K.-H. Acc. Chem. Res. 2008, 41, 21; (j)
Mulzer, J.; Altmann, K.-H.; Höfle, G.; Müller, R.; Prantz, K. C. R. Chimie 2008, 11,
1336; (k) Keck, G. E.; Giles, R. L.; Cee, V. J.; Wager, C. A.; Yu, T.; Kraft, M. B. J. Org.
Chem. 2008, 73, 9675.
17. Kulinkovich, O. G.; Bagutskii, V. V. Zh. Org. Khim. 1997, 33, 898–901. Russ. J. Org.
Chem. (Engl. Transl.) 1997, 33, 830.
18. (a) Rubottom, G. M.; Marrero, R.; Krueger, D. S.; Schreiner, J. L. Tetrahedron Lett.
1977, 18, 4013; (b) Kirihara, M.; Yokoyama, S.; Kakuda, H.; Momose, T.
Tetrahedron Lett. 1995, 38, 6907; (c) Kirihara, M.; Yokoyama, S.; Kakuda, H.;
Momose, T. Tetrahedron 1998, 54, 13943.
19. PhI(OAc)2 (12.68 g, 39.4 mmol) was added portionwise over 20 min to a water
cooled solution of compound 19 (10.00 g, 39.4 mmol) in AcOH (50 ml). The
reaction mixture was stirred for 10 min, diluted with H2O (50 ml) and THF
(100 ml), and heated under reflux for 1 h. The reaction mixture was
concentrated under reduced pressure, and the residue was diluted with H2O
(50 ml) and extracted with Et2O. The organic layers were dried over MgSO4,
concentrated under reduced pressure, and the residue was chromatographed
on silica gel (petroleum ether/EtOAc) to give acid 20 (8.96 g, 93%). IR (CCl4)
7. (a) Nicolaou, K. C.; Sarabia, F.; Ninkovic, S.; Yang, Z. Angew. Chem., Int. Ed. 1997,
36, 525; (b) Balog, A.; Harris, C.; Savin, K.; Zhang, X.-G.; Chou, T. C.; Danishefsky,
S. J. Angew. Chem., Int. Ed. 1998, 37, 2675; (c) Schinzer, D.; Bauer, A.; Scieber, J.
Synlett 1998, 861.
m
max: 1739, 1712 cmꢀ1 1H NMR (400 MHz, CDCl3): d 0.61–0.64 (m, 2H), 0.75–
.
0.78 (m, 2H), 1.13 (s, 9H), 1.40–1.48 (m, 2H), 1.61–1.69 (m, 2H), 1.73–1.77 (m,
2H), 2.34 (t, J = 7.4 Hz, 2H), 10.13 (br s, 1H). 13C NMR (100 MHz, CDCl3) d 11.7
(2 ꢃ C), 24.3, 25.3, 26.9 (3 ꢃ C), 33.8, 34.0, 38.6, 59.1, 178.4, 179.7. Anal. Calcd
for C13H22O4: C, 64.44; H, 9.15. Found: C, 64.39; H, 9.11.
8. Deno, N. C. J. Am. Chem. Soc. 1947, 69, 2233.
9. Kiyooka, S.; Hena, M. A. J. Org. Chem. 1999, 64, 5511.
10. The ee value was determined by Mosher’s method30 from the integral
intensities of the signals of the protons at d = 5.83 and 5.85 ppm (CHOMTPA)
in the 1H NMR spectra of the (S)-MTPA esters.
20. Compound 25: ½a 2D0 max: 3640, 3534, 1742 cmꢀ1
ꢀ11 (c 2.2, CHCl3). IR (CCl4) m .
ꢂ
1H NMR (400 MHz, CDCl3): d 0.91 (dd, J = 6.7, 0.8 Hz, 3H), 1.09–1.19 (m, 1H),
1.38–1.47 (m, 1H), 1.54–1.75 (m, 3H), 2.31 (t, J = 7.3 Hz, 2H), 2.31 (br s, 1H),
3.44 (ddd, J = 10.8, 6.4, 1.0 Hz, 1H), 3.49 (ddd, J = 10.8, 6.1, 1.0 Hz, 1H), 3.66 (s,
3H). 13C NMR (100 MHz, CDCl3) d 16.4, 22.2, 32.5, 34.2, 35.4, 51.5, 67.9, 174.2.
Anal. Calcd for C8H16O3: C, 59.97; H, 10.07. Found: C, 59.85; H, 10.09.
21. The ee value was determined by Mosher’s method30 from the integral
intensities of the signals of the protons at d = 4.12 and 4.06 ppm
(CH2OMTPA) in the 1H NMR spectra of the (S)-MTPA esters of compound 23.
22. Hurski, A. L.; Sokolov, N. A.; Kulinkovich, O. G. Tetrahedron 2009, 65, 3518.
23. (a) Kozyrkov, Yu. Yu.; Kulinkovich, O. G. Synlett 2002, 443; (b) Kananovich, D.
G.; Hurski, A. L.; Kulinkovich, O. G. Tetrahedron Lett. 2007, 48, 8424.
11. To a solution of ester 12 (1.52 g, 3.62 mmol) and Ti(Oi-Pr)4 (2.2 ml, 7.40 mmol)
in Et2O (36 ml) at ꢀ35 °C was added a solution of EtMgBr (2 M in Et2O, 11 ml,
22 mmol) over 2 h. The reaction was quenched with H2O (2.6 ml), the reaction
mixture was filtered, and the filter cake was washed thoroughly with EtOAc.
The filtrate was concentrated under reduced pressure and the residue was
chromatographed on silica gel (petroleum ether/EtOAc) to give unreacted ester
12 (0.23 g, 15%) and cyclopropanol 13 (0.81 g, 63%, 74% based on recovered
starting material). ½a 2D0 max: 3542, 1723 cmꢀ1 1H
ꢀ18 (c 2.0, CHCl3). IR (CCl4) m .
ꢂ
NMR (400 MHz, CDCl3): d 0.15 (s, 9H), 0.29–0.34 (m, 1H), 0.50–0.67 (m, 3H),
0.58 (s, 3H), 0.70–1.06 (m, 4H), 1.10 (s, 3H), 1.12 (s, 9H), 1.45 (dd, J = 14.3,
10.2 Hz, 1H), 2.44 (dd, J = 14.3, 1.5 Hz, 1H), 2.90 (s, 1H), 3.96 (dd, J = 10.2,
1.5 Hz, 1H).13C NMR (100 MHz, CDCl3): d 1.2 (3 ꢃ C), 8.5, 11.7, 12.2, 14.1, 16.5,
25.6, 27.0 (3 ꢃ C), 39.0, 40.1, 42.1, 53.8, 65.0, 75.7, 178.5. Anal. Calcd for
C19H36O4Si: C, 64.00; H, 10.18. Found: C, 63.94; H, 10.35.
24. Schinzer, D.; Bauer, A.; Schieber, J. Chem. Eur. J. 1999, 5, 2492.
25. Iranaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn.
1979, 52, 1989.
26. The NMR spectra of the obtained epothilone D (1) are in full agreement with those
reported earlier for this compound:14,6k 1H NMR (400 MHz, CDCl3) d 1.01 (d,
J = 6.9 Hz, 3H), 1.07 (s, 3H), 1.19 (d, J = 6.7 Hz, 3H), 1.24–1.32 (m, 3H), 1.34 (s,
3H), 1.66 (s, 3H), 1.69–1.77 (m, 2H), 1.85–1.91 (m, 1H), 2.06 (s, 3H), 2.24–2.35
(m, 3H), 2.46 (dd, J = 14.3, 11.3 Hz, 1H), 2.63 (dt, J = 14.8, 10.8 Hz, 1H), 2.69 (s,
3H), 3.08 (br s, 1H), 3.15 (q, J = 6.7 Hz, 1H), 3.64 (br s, 1H), 3.71–3.74 (m, 1H),
4.31 (d, J = 10.2 Hz, 1H), 5.14 (dd, J = 9.7, 4.6 Hz, 1H), 5.21 (d, J = 9.7 Hz, 1H),
6.59 (s, 1H), 6.96 (s, 1H). 13C NMR (100 MHz, CDCl3) d 13.4, 15.7, 15.8, 17.9,
18.9, 22.8, 22.9, 25.3, 31.5, 31.6, 32.4, 38.3, 39.6, 41.6, 53.5, 72.1, 74.1, 78.8,
115.5, 119.0, 120.8, 138.3, 139.1, 151.9, 165.0, 170.3, 220.6.
12. (a) Stahl, G. W.; Cottle, D. L. J. Am. Chem. Soc. 1943, 65, 1782; (b) De Puy, C. H.;
Breitbeil, F. W. J. Am. Chem. Soc. 1963, 85, 2176.
13. (a) Kulinkovich, O. G.; Savchenko, A. I.; Sviridov, S. V.; Vasilevski, D. A.
Mendeleev Commun. 1993, 230; (b) Epstein, O. L.; Savchenko, A. I.; Kulinkovich,
O. G. Tetrahedron Lett. 1999, 40, 5935; (c) Epstein, O. L.; Savchenko, A. I.;
Kulinkovich, O. G. Izv. Akad. Nauk. 2000, 376. Russ. Chem. Bull. (Engl. Transl.)
2000, 49, 378.
14. Nicolaou, K. C.; Ninkovic, S.; Sarabia, F.; Vourloumis, D.; He, Y.; Vallberg, H.;
Finlay, M. R. V.; Yang, Z. J. Am. Chem. Soc. 1997, 119, 7974.
15. (a) Cha, J. K.; Kim, H.; Lee, J. J. Am. Chem. Soc. 1996, 118, 4198; (b) Lee, J.; Kim, Y.
G.; Bae, J. G.; Cha, J. K. J. Org. Chem. 1996, 61, 4878.
27. (a) Meng, D.; Bertinato, P.; Balog, A.; Su, D.-S.; Kamenecka, T.; Sorensen, E. J.;
Danishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10073; (b) May, S. A.; Grieco, P. A.
Chem. Commun. 1998, 1597; (c) White, J. D.; Carter, R. G.; Sundermann, K. F. J.
Org. Chem. 1999, 64, 684; (d) Mulzer, J.; Mantoulidis, A.; Öhler, E. J. Org. Chem.
2000, 65, 7456; (e) Taylor, R. E.; Chen, Y. Org. Lett. 2001, 3, 2221; (f) Martin, N.;
Thomas, E. J. Tetrahedron Lett. 2001, 42, 8373; (g) Jung, J.-C.; Kache, R.; Vines, K.
K.; Zheng, Y.-S.; Bijoy, P.; Valluri, M.; Avery, M. A. J. Org. Chem. 2004, 69, 9269;
(h) Broadrup, R. L.; Sundar, H. M.; Swindell, C. S. Bioorg. Chem. 2005, 33, 116.
28. To support the validity of this statement, we roughly calculated the price29 of
the molar amounts of the chemicals used for the total syntheses of epothilone
16. A solution of cyclopentylmagnesium chloride (2 M in Et2O, 4.1 ml, 8.22 mmol)
was added over 40 min to a solution of ester 16 (0.50 g, 2.05 mmol), alkene 17
(1 g, 3.10 mmol), and Ti(Oi-Pr)4 (0.61 ml, 2.05 mmol) in THF (40 ml). The
reaction mixture was stirred for 10 min, the reaction was quenched with H2O
(1.1 ml), the reaction mixture was filtered, and the filter cake was washed
thoroughly with EtOAc. The filtrate was concentrated under reduced pressure
and the residue was chromatographed on silica gel (petroleum ether/EtOAc) to
give unreacted alkene 17 (0.54 g, 1.67 mmol) and cyclopropanol 3 (0.73 g, 66%
D.6k,7b,c,14,27 The average value of this sum (37 ꢃ 103 Euroꢁmolꢀ1
) is
based on ester 16, 95% based on alkene 17). IR (CCl4)
m
max: 3609, 3468 cmꢀ1
.
1H
substantially higher than the corresponding sum calculated for the synthesis
of epothilone D (1) by the cyclopropanol approach (11 ꢃ 103 Euroꢁmolꢀ1). The
latter value is almost twofold lower than the value for the leading approach7b
(21 ꢃ 103 Euroꢁmolꢀ1) and only slightly inferior to this one in obtaining the
same amount of the target molecule (1).
NMR (400 MHz, CDCl3): d 0.00 (s, 3H), 0.06 (s, 3H), 0.06–0.11 (m, 1H), 0.78–
0.89 (m, 3.5H), 0.88 (s, 9H), 0.92 (d, J = 7.7 Hz, 1.5H), 1.07–1.83 (m, 15H), 1.94
(s, 3H), 2.52 (br s, 1H), 2.68 (s, 3H), 3.14 (dd, J = 9.2, 6.5 Hz, 0.5H), 3.22 (dd,
J = 9.2, 5.9 Hz, 0.5H), 3.45–3.53 (m, 1.5H), 3.58 (dd, J = 9.2, 6.5 Hz, 0.5H), 3.80–
3.85 (m, 1H), 4.12–4.18 (m, 1H), 4.52–4.56 (m, 1H), 6.46 (s, 1H), 6.90 (s, 1H).
Anal. Calcd for C29H51O4NSSi: C, 64.76; H, 9.56. Found: C, 64.60; H, 9.45.
30. Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.