Page 11 of 21
Journal of the American Chemical Society
(36)
(37)
Forge, A.; Schacht, J. Aminoglycoside Antibiotics. Audiol.
Neuro-Otology 2000, (1), 3–22.
(24)
François, B.; Russell, R. J. M.; Murray, J. B.; Aboul-ela, F.;
Masquida, B.; Vicens, Q.; Westhof, E. Crystal Structures of
Complexes between Aminoglycosides and Decoding A Site
Oligonucleotides: Role of the Number of Rings and Positive
Charges in the Specific Binding Leading to Miscoding.
Nucleic Acids Res. 2005, 33 (17), 5677–5690.
Pape, T.; Wintermeyer, W.; Rodnina, M. V. Conformational
Switch in the Decoding Region of 16S RRNA during
Aminoacyl-TRNA Selection on the Ribosome. Nat. Struct.
Hutchin, T.; Haworth, L.; Higashi, K.; Fischel-ghodsian, N.;
5
1
2
3
4
5
Desa, D. E.; Nichols, M. G.; Smith, H. J. Aminoglycosides
Rapidly Inhibit NAD(P)H Metabolism Increasing Reactive
Oxygen Species and Cochlear Cell Demise. J. Biomed. Opt.
Topf, U.; Uszczynska-Ratajczak, B.; Chacinska, A.
Mitochondrial Stress-Dependent Regulation of Cellular
Protein Synthesis. Journal of cell science. 2019.
(38)
(39)
6
7
8
9
(25)
(26)
Au, S.; Weiner, N. D.; Schacht, J. Aminoglycoside Antibiotics
Preferentially Increase Permeability in Phosphoinositide-
Containing Membranes: A Study with Carboxyfluorescein in
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Stoneking, M.; Saha, N.; Arnos, C.; Cortopassi, G.
A
Molecular Basis for Human Hypersensitivity of
Aminoglyscoside Antibiotics. Nucleic Acids Res. 1993, 21 (18),
Liposomes. BBA - Biomembr. 1987, 902 (1), 80–86.
Van Bambeke, F.; Mingeot-Leclercq, M. P.; Schanck, A.;
Brasseur, R.; Tulkens, P. M. Alterations in Membrane
Permeability Induced by Aminoglycoside Antibiotics:
Studies on Liposomes and Cultured Cells. Eur. J. Pharmacol.
(40)
(27)
(28)
Francis, S. P.; Katz, J.; Fanning, K. D.; Harris, K. A.; Nicholas,
B. D.; Lacy, M.; Pagana, J.; Agris, P. F.; Shin, J.-B. A Novel
Role of Cytosolic Protein Synthesis Inhibition in
Aminoglycoside Ototoxicity. J. Neurosci. 2013, 33 (7), 3079–
Shulman, E.; Belakhov, V.; Wei, G.; Kendall, A.; Meyron-
Holtz, E. G.; Ben-Shachar, D.; Schacht, J.; Baasov, T. Designer
Aminoglycosides That Selectively Inhibit Cytoplasmic
Rather than Mitochondrial Ribosomes Show Decreased
Mol.
Pharmacol.
1993,
247
(2),
155–168.
https://doi.org/10.1016/0922-4106(93)90073-I.
(41)
Herzog, I. M.; Feldman, M.; Eldar-Boock, A.; Satchi-Fainaro,
R.; Fridman, M. Design of Membrane Targeting Tobramycin-
Based Cationic Amphiphiles with Reduced Hemolytic
Activity. Med. Chem. Commun. 2013,
4 (1), 120–124.
Ototoxicity:
A Strategy for the Treatment of Genetic
Diseases. J. Biol. Chem. 2014, 289 (4), 2318–2330.
(42)
Berkov-Zrihen, Y.; Herzog, I. M.; Benhamou, R. I.; Feldman,
M.; Steinbuch, K. B.; Shaul, P.; Lerer, S.; Eldar, A.; Fridman,
M. Tobramycin and Nebramine as Pseudo-Oligosaccharide
Scaffolds for the Development of Antimicrobial Cationic
Amphiphiles. Chem. - A Eur. J. 2015, 21 (11), 4340–4349.
Zhang, Q.; Alfindee, M. N.; Shrestha, J. P.; Nziko, V. D. P. N.;
Kawasaki, Y.; Peng, X.; Takemoto, J. Y.; Chang, C. W. T.
Divergent Synthesis of Three Classes of Antifungal
Amphiphilic Kanamycin Derivatives. J. Org. Chem. 2016, 81
Subedi, Y. P.; Alfindee, M. N.; Takemoto, J. Y.; Chang, C. W.
T. Antifungal Amphiphilic Kanamycins: New Life for an Old
Drug. Med. Chem. Commun. 2018, pp 909–919.
Jaber, Q. Z.; Benhamou, R. I.; Herzog, I. M.; Ben Baruch, B.;
Fridman, M. Cationic Amphiphiles Induce Macromolecule
Denaturation and Organelle Decomposition in Pathogenic
Yeast. Angew. Chemie - Int. Ed. 2018, 57 (50), 16391–16395.
Bera, S.; Dhondikubeer, R.; Findlay, B.; Zhanel, G. G.;
Schweizer, F. Synthesis and Antibacterial Activities of
Amphiphilic Neomycin B-Based Bilipid Conjugates and
Fluorinated Neomycin B-Based Lipids. Molecules 2012, 17
Dahlgren, J. G.; Anderson, E. T.; Hewitt, W. L. Gentamicin
(29)
(30)
Greber, B. J.; Bieri, P.; Leibundgut, M.; Leitner, A.; Aebersold,
R.; Boehringer, D.; Ban, N. The Complete Structure of the 55S
Mammalian Mitochondrial Ribosome. Science (80-. ). 2015,
Hobbie, S. N.; Akshay, S.; Kalapala, S. K.; Bruell, C. M.;
Shcherbakov, D.; Böttger, E. C. Genetic Analysis of
Interactions with Eukaryotic RRNA Identify the
Mitoribosome as Target in Aminoglycoside Ototoxicity.
Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (52), 20888–20893.
Hobbie, S. N.; Bruell, C. M.; Akshay, S.; Kalapala, S. K.;
Shcherbakov, D.; Böttger, E. C. Mitochondrial Deafness
Alleles Confer Misreading of the Genetic Code. Proc. Natl.
Acad. Sci. U. S. A. 2008, 105 (9), 3244–3249.
Perez-Fernandez, D.; Shcherbakov, D.; Matt, T.; Leong, N.
C.; Kudyba, I.; Duscha, S.; Boukari, H.; Patak, R.; Dubbaka,
S. R.; Lang, K.; Meyer, M.; Akbergenov, R.; Freihofer, P.;
Vaddi, S.; Thommes, P.; Ramakrishnan, V.; Vasella, A.;
Böttger, E. C. 4′-O-Substitutions Determine Selectivity of
Aminoglycoside Antibiotics. Nat. Commun. 2014, 5.
Herzog, I. M.; Louzoun Zada, S.; Fridman, M. Effects of 5- O
-Ribosylation of Aminoglycosides on Antimicrobial Activity
and Selective Perturbation of Bacterial Translation. J. Med.
(43)
(44)
(45)
(31)
(32)
(46)
(33)
(34)
(47)
(48)
(49)
(50)
Blood Levels:
Agents Chemother.
A
Guide to Nephrotoxicity. Antimicrob.
Chem.
2016,
59
(17),
8008–8018.
1975, (1), 58–62.
8
Matsushita, T.; Sati, G. C.; Kondasinghe, N.; Pirrone, M. G.;
Kato, T.; Waduge, P.; Kumar, H. S.; Sanchon, A. C.; Dobosz-
Bartoszek, M.; Shcherbakov, D.; Juhas, M.; Hobbie, S. N.;
Schrepfer, T.; Chow, C.; Polikanov, Y. S.; Schacht, J.; Vasella,
A.; Böttger, E. C.; Crich, D. Design, Multigram Synthesis, and
Black, R. E.; Lau, W. K.; Weinstein, R. J.; Young, L. S.; Hewitt,
W. L. Ototoxicity of Amikacin. Antimicrob. Agents
Chemother.
1976,
9
(6),
956–961.
Bock, B. V.; Edelstein, P. H.; Meyer, R. D. Prospective
Comparative Study of Efficacy and Toxicity of Netilmicin
and Amikacin. Antimicrob. Agents Chemother. 1980, 17 (2),
Kashuba, A. D.; Bertino, J. S.; Nafziger, A. N. Dosing of
Aminoglycosides to Rapidly Attain Pharmacodynamic Goals
and Hasten Therapeutic Response by Using Individualized
Pharmacokinetic Monitoring of Patients with Pneumonia
Caused by Gram-Negative Organisms. Antimicrob. Agents
Chemother. 1998, 42 (7), 1842–1844.
in Vitro and in Vivo Evaluation of Propylamycin:
A
Semisynthetic 4,5-Deoxystreptamine Class Aminoglycoside
for the Treatment of Drug-Resistant Enterobacteriaceae and
Other Gram-Negative Pathogens. J. Am. Chem. Soc. 2019, 141
Lopez-Gonzalez, M. A.; Delgado, F.; Lucas, M.
Aminoglycosides Activate Oxygen Metabolites Production
in the Cochlea of Mature and Developing Rats. Hear. Res.
5955(99)00122-7.
(35)
(51)
Matt, T.; Ng, C. L.; Lang, K.; Sha, S. H.; Akbergenov, R.;
ACS Paragon Plus Environment