Table 3 Quinine-mediated tandem addition of nitrocompounds 2a–g
and methyl vinyl ketone 4 to 1a
H. Jiang, A. Milelli, P. Elsner, R. G. Hazell and K. A. Jørgensen,
Angew. Chem., Int. Ed., 2007, 46, 9202; (f) D. Enders, M. R. M.
Huettl, C. Grondal and G. Raabe, Nature, 2006, 441, 861;
(g) Y. Huang, A. M. Walji, C. H. Larsen and D. W. C.
MacMillan, J. Am. Chem. Soc., 2005, 127, 15051.
3 (a) Enantioselective Organocatalysis, ed. P. I. Dalko, Wiley-VCH,
Weinheim, 2007; (b) A. Berkessel and H. Groger, Asymmetric
Organocatalysis, Wiley-VCH, Weinheim, 2004.
4 (a) B. Wang, F. Wu, Y. Wang, X. Liu and L. Deng, J. Am. Chem.
Soc., 2007, 129, 768; (b) P. S. Hynes, D. Stranges, P. A. Stupple,
A. Guarna and D. J. Dixon, Org. Lett., 2007, 9, 2107; (c) Y. Wang,
X. Liu and L. Deng, J. Am. Chem. Soc., 2006, 128, 3928;
(d) G. Bartoli, M. Bosco, A. Carlone, A. Cavalli, M. Locatelli,
A. Mazzanti, P. Ricci, L. Sambri and P. Melchiorre, Angew.
Chem., Int. Ed., 2006, 45, 4966.
5 For leading examples where asymmetric quaternary stereocenters
are built by metal catalysis see: (a) M. Marigo, K. Juhl and
K. A. Jørgensen, Angew. Chem., Int. Ed., 2003, 42, 1367;
(b) Y. Hamashima, D. Hotta and M. Sodeoka, J. Am. Chem.
Soc., 2002, 124, 11240; (c) L. Hintermann and A. Togni, Angew.
Chem., Int. Ed., 2000, 39, 4359 and references cited therein.
6 M. Bella and T. Gasperi, Synthesis, 2009, 1583.
7 (a) P. G. Cozzi, R. Hilgraf and N. Zimmermann, Eur. J. Org.
Chem., 2007, 5969; (b) B. M. Trost and C. Jiang, Synthesis, 2006,
369; (c) J. Christoffers and A. Baro, Adv. Synth. Catal., 2005, 347,
1473; (d) Quaternary Stereocenters—Challenges and Solutions for
Organic Synthesis, ed. J. Christoffers and A. Baro, Wiley-VCH,
Weinheim, 2005.
Entrya
R
Yb (%) 6 : 5
5–6a, 85 1 : 4
drc
eec (%)
1
2
3
4
5
6
H, 2a
Et, 2b
Me, 2c
Bn, 2e
CH2OTIPS, 2f
>10 : 1 >97
6b, 67
6c, 78
6d, 78
6e, 83
>10 : 1 >10 : 1 96
>10 : 1 >10 : 1 95
>10 : 1 >10 : 1 95
>10 : 1 >10 : 1 93
>10 : 1 >10 : 1 96
(CH2)2CO2Me, 2g 6f, 78
a
Reaction condition: 0.35 mmol 1a, 3 eq. nitrocompund 2, 1 mL
toluene, 10 mol% quinine I, ꢀ20 1C, 24 h, then 3 eq. methyl vinyl
b
ketone 4, 3 days. Yield referred to pure isolated compounds after
c
FC. dr and ee determined by CSP-HPLC equipped with an IB
d
chiralpack column. For 5a: ee of the more polar epimer; stereo-
chemistry determined via NOESY spectra, see ESIw for details; 5a as
1(more polar) : 1.5 (less polar) mixture of epimers. For the stereo-
chemical determination see ESI.w
8 For the preparation of these substrates see: H. J. Reich,
J. M. Renga and I. L. Reich, J. Am. Chem. Soc., 1975, 97, 5434.
9 (a) M. Shizuka and M. L. Snapper, Angew. Chem., Int. Ed., 2008,
47, 5049; (b) C. Schotes and A. Mezzetti, J. Am. Chem. Soc., 2010,
132, 3652; (c) M. M. Biddle, M. Lin and K. A. Scheidt, J. Am.
Chem. Soc., 2007, 129, 3830.
adduct 6a, derived from the addition of nitromethane to 1a,
cyclizes spontaneously to afford 5a (Table 3, entry 1)
differently from the other products derived from primary
nitroalkanes 2b, c and e–g (entries 2–6). The synthetic versa-
tility and usefulness of the functional nitro group is witnessed
by its several reported transformations.16
10 The stereoselectivity of Cinchona alkaloids mediated reaction is
generallydependent on the solvent; for the addition of nitroalkanes
a similar unusual behavior has been reported, see ref. 11b.
11 Cinchona alkaloids derived thiourea catalysts: (a) Q. Zhu and
Y. Lu, Org. Lett., 2009, 11, 1721; (b) H.-H. Lu, X.-F. Wang,
C.-J. Yao, J.-M. Zhang, H. Wu and W.-J. Xiao, Chem. Commun.,
2009, 4251; (c) P. Li, Y. Wang, X. Liang and J. Ye, Chem.
Commun., 2008, 3302; (d) B. Vakulya, S. Varga and T. Soos,
J. Org. Chem., 2008, 73, 3475; (e) B. Vakulya, S. Varga,
A. Csampai and T. Soos, Org. Lett., 2005, 7, 1967. Other chiral
thiourea catalysts see: (f) K. Mei, M. Jin, S. Zhang, P. Li, W. Liu,
X. Chen, F. Xue, W. Duan and W. Wang, Org. Lett., 2009, 11,
2864; (g) C. Rabalakos and W. D. Wulff, J. Am. Chem. Soc., 2008,
130, 13524. Review: (h) A. G. Doyle and E. N. Jacobsen, Chem.
Rev., 2007, 107, 5713.
12 (a) M. Yamaguchi, Y. Igarashi, R. S. Reddy, T. Shiraishi and
M. Hirama, Tetrahedron, 1997, 53, 11223; (b) M. Yamaguchi,
T. Shiraishi, Y. Igarashi and M. Hirama, Tetrahedron Lett., 1994,
35, 8233; (c) S. Hanessian and V. Pham, Org. Lett., 2000, 2, 2975;
(d) S. Hanessian, Z. Shao and J. S. Warrier, Org. Lett., 2006, 8,
4787.
13 Comprehensive review: R. Ballini, G. Bosica, D. Fiorini,
A. Palmieri and M. Petrini, Chem. Rev., 2005, 105, 933.
14 Example of asymmetric reactions where a stable stereocenter in the
In conclusion, herein is presented the addition of nitro-
alkanes to a,b0-unsaturated b-ketoesters. The reactions
proceed with excellent stereoselectivity, affording Michael
adducts 3. A tandem reaction affords in good yields and
stereoselectivity densely functionalized compounds 5a or 6.
This control of multiple stereocenters is especially significant
in the field of Cinchona alkaloids catalysis or when nitro-
alkanes are employed as nucleophiles; we believe that
compounds 1 are attractive electrophiles whose synthetic potential
can be harvested in several other asymmetric transformations.
Authors thank Dr Fabio Sciubba and Mr Marco Pastore,
‘‘Sapienza’’ University of Roma, for the high-field spectra of
compounds 3h and 5a, and for invaluable technical help,
respectively. MB is also grateful to Prof. M. Antonietta Loreto
for the use of HPLC, and to Prof. Lelio Zoccolillo and
Dr Susanna Insogna, from the same institution, for the usage
of GC facilities and for very helpful discussions. Financial
support to this work was provided from ‘‘Sapienza’’ University
of Roma (‘‘Finanziamento di Ateneo’’ 2007–2008) and from
RSC with a Research Bursary to MB.
a-position to
a nitro group is obtained: (a) C. Palomo,
M. Oiarbide, A. Laso and R. Lopez, J. Am. Chem. Soc., 2005,
127, 17622; (b) T. P. Yoon and E. N. Jacobsen, Angew. Chem., Int.
Ed., 2005, 44, 466; (c) W. J. Nodes, D. R. Nutt, A. M. Chippindale
and J. A. Cobb, J. Am. Chem. Soc., 2005, 131, 16016 and ref. 11a.
15 The organocatalytic asymmetric cyclopropanation reaction of
enones employing bromonitromethane 2h is known; (a) J. Lv,
J. Zhang, Z. Lin and Y. Wang, Chem.–Eur. J., 2009, 15, 972;
(b) T. Inokuma, S. Sakemoto and Y. Takemoto, Synlett, 2009,
1627 and reference cited therein. The formation of the three
membered ring moiety in compound 3h0 allowed stereochemistry
determination of the stereocenter in the a-position to the nitro
group; see ESIw for details.
Notes and references
1 Overview: D. Enders, C. Grondal and M. R. M. Huettl, Angew.
Chem., Int. Ed., 2007, 46, 1570.
2 For recent examples of organocascade reactions employing these
and other catalysts see: (a) A. Michrowska and B. List, Nat. Chem.,
2009, 1, 225; (b) M. Rueping, A. Kuenkel, F. Tato and J. W. Bats,
Angew. Chem., Int. Ed., 2009, 121, 3699; (c) D. Enders, C. Wang
and J. W. Bats, Angew. Chem., Int. Ed., 2008, 47, 7539; (d) J. Zhou
and B. List, J. Am. Chem. Soc., 2007, 129, 7498; (e) E. Reyes,
16 (a) The Chemistry of Amino, Nitroso, Nitro and Related Groups,
ed. S. Patai, Wiley, Chichester, 1996; (b) The Nitro Group in
Organic Synthesis, ed. N. Ono, Wiley-VCH, New York, 2001.
ꢁc
This journal is The Royal Society of Chemistry 2010
5162 | Chem. Commun., 2010, 46, 5160–5162