Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C5CC06177F
COMMUNICATION
Journal Name
Albericio, Chem. Rev., 2011, 111, 6557. (c) T. I. Al-Warhi, H.
M. A. Al-Hazimi and A. El-Faham, J. Saudi. Chem. Soc., 2012,
the additions of the α-amino ester to generate a tetravalent
intermediate B. The collapse of B is then assisted by water and the
Lewis basicity of ortho chlorine substituents to yield eventually the
desired dipeptide.
16, 97. (d) S. C. Stolzew and M. Kaiser, Synthesis 2012, 44
,
1755. (e) V. R Pattabiraman and J. Bode, W. Nature 2011,
480, 471. (f) V. Mäde, S. Els-Heindl and A. G. Beck-Sickinge,
Beilstein J. Org. Chem. 2014, 10, 1197.
2
3
(a) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606.
(b) C. Montalbetti and V. Falque, Tetrahedron, 2005, 61,
10827–10852. (c) K. Ishihara, Tetrahedron 2009, 65, 1085.
For recent reviews about catalytic amide formation, see (a)
H. Lundberg, F. Tinnis, N. Selander and H. Adolfsson, Chem.
Soc. Rev., 2014, 43, 2714. (b) R. M. Lanigan and T. D.
Sheppard, Eur. J. Org. Chem., 2013, 7453. (c) K. Arnold, B.
Davies, R. L. Giles, C. Grosjean, G. E. Smith and A. Whiting,
Adv. Synth. Catal., 2006, 348, 813.
4
(a) K. Ishihara, S. Ohara and H. Yamamoto, J. Org. Chem.,
1996, 61, 4196. See also (b) T. Maki, K. Ishihara and H.
Yamamoto, Tetrahedron, 2007, 63, 8645. For other recent
catalysed amide bond formation see: (c) D. C. Lenstra, F. P. J.
T. Rutjes and J. Mecinović, Chem. Commun., 2014, 50, 5763.
Figure 4. Proposed mechanism for the amide synthesis catalysed by the borinic acid 9h.
(d) H. Lundberg and H. Adolfsson, ACS Catal., 2015, 5, 3271.
To clarify if both chlorine atoms are involved, the unsymmetrical
borinic acid 9p was prepared and tested (Scheme 2). With this
catalyst bearing a single chlorine atom, the yield was reduced from
99% with 9h (Table 2) to 27%.
(e) Y. Terada, N. Ieda, K. Komura and Y. Sugi, Synthesis, 2008,
2318. (f) N. Caldwell, C. Jamieson, I. Simpson and A. J. B.
Watsona, Chem. Commun., 2015, 51, 9495. (g) J. L. Vrijdag, F.
Delgado, N. Alonso, W. M. De Borggraeve, N. Pe´rez-Maciasb
and Jesus Alca´zar, Chem. Commun., 2014, 50, 15094. (h) M.
Tamura, D. Murase and K. Komura, Synthesis 2015, 47, 769.
(i) S. K. Mangawa, S. K. Bagh, K. Sharma and S. K. Awasthi,
Tetrahedron. Lett. 2015, 56, 1960. (j) L. Gu, J. Lim, J. L.
Cheong, S. S. Lee, Chem. Commun. 2014, 50, 7017.
(a) N. Gernigon, R. M. Al-Zoubi and D. G. Hall, J. Org. Chem.,
2012, 77, 8386. (b) R. M. Al-Zoubi, O. Marion and D. G. Hall,
Angew. Chem. Int. Ed., 2008, 47, 2876.
5
Scheme 2. Reactivity of borinic acid 9p in the model reaction between phenylacetic
acid 6 and benzylamine 7.
6
7
8
9
E. K. W. Tam, Rita, L. Y. Liu and A. Chen, Eur. J. Org. Chem.,
2015, 1100.
T. Mohy El Dine, W. Erb, Y. Berhault, J. Rouden and J.
Blanchet, J. Org. Chem., 2015, 80, 4532.
S. Liu, Y. Yang, X. Liu, F. K. Ferdousi, A. S. Batsanov and A.
Whiting, Eur. J. Org. Chem., 2013, 5692.
The cooperative catalytic effect is still unclear but allowed to
obtain Boc-Phe-Val-OMe in 55% yield in the presence of 50
mol% of 1 and 50 mol% of 2 while 100 mol% of 2 delivered
Accordingly, the specific reactivity of 9h and 9k tends to indicate
that both halogen atoms are probably involved in the rate-
determining step and that the intermediate B is formed rather than
B’ (Figure 4).
Indeed, mild hydrogen-halogen bondings might stabilize the
transition state and favour the collapsing of B. Additionally we
suggest that the formation of anhydride A is pre-organized by
similar hydrogen-halogen bonding.
<2% yield.
10 (a) K. Ishihara, H. Kurihara and H. Yamamoto, J. Org. Chem.,
1997, 62, 5664. (b) D. Lee and M. S. Taylor, J. Am. Chem.
Soc., 2011, 133, 3724. (c) T. Soeta, Y. Kojima, Y. Ukaji and K.
Inomata, Tetrahedron Letters, 2011, 52, 2557. (d) M. G.
To summarize, we have uncovered the unique reactivity of borinic
acids for amide and peptide syntheses. Fourteen dipeptides were
prepared in synthetically useful yields without detectable
racemization. Importantly, no stoichiometric peptide coupling
reagents were used and thus minimal waste was generated with
water being the sole side product of the reaction. However, there is
still room for improvements; progress is necessary to match the
requirements of solid phase peptide synthesis such as very high
yields and short reaction times. We believe that those results will
shed light on new strategies aiming at developing the catalysed
peptide synthesis, which exhibits an utmost importance for the
pharmaceutical industry.
Chudzinski, Y. Chi and M. S. Taylor, Aust. J. Chem., 2011, 64
1466. (e) H. Zheng, M. Lejkowski and D. G. Hall, Chem. Sci.,
,
2011,
2013,
2
3
, 1305. (f) E. Dimitrijević and M. S. Taylor, ACS Catal.,
, 945. (g) D. Lee, C. L. Williamson, L. Chan and M. S.
Taylor, J. Am. Chem. Soc., 2012, 134, 8260. (h) Y. Mori, J.
Kobayashi, K. Manabe and S. Kobayashi, Tetrahedron, 2002,
58, 8263.
11 The synthesis of 9k is remarkably low yielding. See
supporting information for details.
12 (a) C.-Y. Lee, S.-J. Ahn and C.-H. Cheon, J. Org. Chem., 2013,
78, 12154. (b) G. Noonan and A. G. Leach, Org. Biomol.
Chem., 2015, 13, 2555.
We gratefully acknowledge ANR "NeoACAT" (JC 2012 program) for a
fellowship to TM and région Basse-Normandie for financial
supports.
Notes and references
1
For recent reviews about peptide synthesis, see (a) S. B. H.
Kent, Chem. Soc. Rev. 2009, 38, 338. (b) A. El-Faham and F.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins