Coordination Behavior of (2-Pyridylmethyl)amide Anions
[5] M. Westerhausen, A. N. Kneifel, N. Makropoulos, Inorg.
Chem. Commun. 2004, 7, 990–993.
[6] M. Westerhausen, A. N. Kneifel, A. Kalisch, Angew. Chem.
2005, 117, 98–100; Angew. Chem. Int. Ed. 2005, 44, 96–98.
[7] C. Koch, A. Malassa, C. Agthe, H. Görls, R. Biedermann, H.
Krautscheid, M. Westerhausen, Z. Anorg. Allg. Chem. 2007,
633, 375–382.
1592 (m), 1569 (m), 1454 (vs), 1377 (vs), 1341 (w), 1306 (w), 1279
(w), 1248 (w), 1195 (w), 1152 (w), 1124 (w), 1110 (w), 1070 (w),
1046 (w), 1027 (w), 998 (w), 974 (w), 942 (w), 917 (w), 884 (w), 860
(w), 843 (w), 737 (m), 722 (m), 697 (m), 666, (vw), 647 (vw), 614
(vw), 543 (w), 515 (w) cm–1. C52H48Li2N4OP2 (820.75): calcd. C
76.10, H 5.90, N 6.83; found C 72.42, H 5.18, N 6.63.
[8] C. Koch, H. Görls, M. Westerhausen, Acta Crystallogr., Sect.
E 2007, 63, m2732.
[9] M. Westerhausen, A. N. Kneifel, P. Mayer, Z. Anorg. Allg.
Chem. 2006, 632, 634–638.
[10] J. T. B. H. Jastrzebski, J. M. Klerks, G. van Koten, K. Vrieze,
J. Organomet. Chem. 1981, 210, C49–C53.
Synthesis of 4: Compound 2 (0.40 g, 1.1 mmol) was dissolved in
toluene (3 mL) and cooled to 0 °C. A 1.5 solution of dimeth-
ylzinc (0.75 g) in toluene was added dropwise to this stirred solu-
tion. After addition, the color of the solution changed to deep
violet. This clear solution was stirred at room temp. for an ad-
ditional 2 h. After removal of the solvent (2 mL) in vacuo, the re-
maining solution was stored at –20 °C. The crystalline, colorless
product was obtained from this solution after storage at –20 °C for
several days. Yield: 0.33 g (0.75 mmol, 68%). 1H NMR (400 MHz,
[11]
[12]
L. H. Polm, C. J. Elsevier, G. van Koten, J. M. Ernsting, D. J.
Sufkens, K. Vrieze, R. R. Andréa, C. H. Stam, Organometallics
1987, 6, 1096–1104.
E. Wissing, S. van der Linden, E. Rijnberg, J. Boersma, W. J. J.
Smeets, A. L. Spek, G. van Koten, Organometallics 1994, 13,
2602–2608.
3
[D8]thf): δ = 8.02 [d, J(H,H) = 4.0 Hz, 1 H, H1] 7.49 [dd, 3J(H,H)
= 8.0 Hz, 1 H, H3], 7.32 (m, 2 H, o-Ph), 7.17 (m, 4 H, o-PPh2),
7.02 (m, 6 H, m-PPh2, p-PPh2), 6.90 (m, 3 H, m-Ph, p-Ph), 7.05
[13]
[14]
[15]
[16]
[17]
[18]
G. van Koten, J. T. B. H. Jastrzebski, K. Vrieze, J. Organomet.
Chem. 1983, 250, 49–61.
A. L. Spek, J. T. B. H. Jastrzebski, G. van Koten, Acta Crys-
tallogr., Sect. C 1987, 43, 2006–2007.
C. C. Lu, E. Bill, T. Weyhermüller, E. Bothe, K. Wieghardt, J.
Am. Chem. Soc. 2008, 130, 3181–3197.
A. Malassa, N. Herzer, H. Görls, M. Westerhausen, unpub-
lished results.
A. Malassa, H. Görls, A. Buchholz, W. Plass, M. Westerhau-
sen, Z. Anorg. Allg. Chem. 2006, 632, 2355–2362.
See, for example: a) M. Noji, Y. Kidani, H. Koike, Bull. Chem.
Soc. Jpn. 1975, 48, 245–249; b) M. L. Niven, G. C. Percy, Spec-
trosc. Lett. 1977, 10, 519–525; c) M. L. Niven, G. C. Percy, J.
Mol. Struct. 1980, 68, 73–80; d) M. Mikami-Kido, Y. Saito, Acta
Crystallogr., Sect. B 1982, 38, 452–455; e) M. Westerhausen, T.
Bollwein, K. Polborn, Z. Naturforsch., Teil B 2000, 55, 51–59.
3
(m, 1 H, H4), 6.94 (m, 1 H, H2), 5.46 [d, J(H,P) = 17.2 Hz, 1 H,
CH], –0.61 (s, 3 H, CH3) ppm. 13C{1H} NMR (100 MHz, [D8]thf):
δ = 166.2 (br., C5), 145.9 [i-C(Ph)], 147.3 (C1), 147.8 [br., i-
C(PPh2)], 138.5 (C3), 133.5 [d, 2J(C,P) = 13.2 Hz, o-C(PPh2)], 133.0
[d, 2J(C,P) = 14.3 Hz, o-C(Ph)], 128.5 [m-C(PPh2), p-C(PPh2)],
127.9 [m-C(Ph), p-C(Ph)], 123.7 (C4), 122.7 (C2), 67.7 [d, 2J(C,P) =
20.8 Hz, C6], –11.8 (CH3) ppm. 31P{1H} NMR (81 MHz, C6D6): δ
= 46.8 ppm. IR (Nujol): ν = 2924 (vs), 2854 (vs), 1603 (w), 1450
˜
(m), 1437 (m), 1377 (w), 1304 (vw), 1264 (vw), 1195 (w), 1152 (w),
1080 (w), 1042 (m), 1019 (w), 802 (vw), 759 (m), 703 (w), 687 (w),
665 (w), 619 (w), 572 (vw), 509 (vw) cm–1. C50H46N4P2Zn2 (895.60):
calcd. C 67.05, H 5.18, N 6.26; found C 66.10, H 5.63, N 6.03.
Structure Determinations: The intensity data for the compounds were
collected with a Nonius KappaCCD diffractometer by using graph-
ite-monochromated Mo-Kα radiation.[29,30] The structures were
solved by Direct Methods (SHELXS[31]) and refined by full-matrix
least-squares techniques against Fo2 (SHELXL-97[32]). All hydrogen
atoms were included at calculated positions with fixed thermal pa-
rameters. All nondisordered non-hydrogen atoms were refined aniso-
tropically.[32] Crystallographic data as well as structure solution and
refinement details are summarized in Table 3. The XP program (Sie-
mens Analytical X-ray Instruments, Inc.) was used for structure rep-
resentations. CCDC-761465 (2), -761466 (3), and -761467 (4) contain
the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
[19] D. Olbert, A. Kalisch, N. Herzer, H. Görls, P. Mayer, L. Yu,
M. Reiher, M. Westerhausen, Z. Anorg. Allg. Chem. 2007, 633,
893–902.
[20] M. Westerhausen, A. N. Kneifel, H. Nöth, Z. Anorg. Allg.
Chem. 2006, 632, 2363–2366.
[21] T. Kloubert, M. Schulz, H. Görls, M. Friedrich, M. Westerhau-
sen, Z. Naturforsch., Teil B 2009, 64, 784–792.
[22] P. W. Dyer, J. Fawcett, M. J. Hanton, J. Organomet. Chem.
2005, 690, 5264–5281.
[23] D. A. Smith, A. S. Batsanov, K. Miqueu, J.-M. Sotiropoulos,
D. C. Apperley, J. A. K. Howard, P. W. Dyer, Angew. Chem.
2008, 120, 8802–8805; Angew. Chem. Int. Ed. 2008, 47, 8674–
8677.
[24] A. B. Zaitsev, A. M. Vasil’tsov, E. Y. Schmidt, A. I. Mikhaleva,
L. V. Morozova, A. V. Afonin, I. A. Ushakov, B. A. Trofimov,
Tetrahedron 2002, 58, 10043–10046.
[25] J. C. Jochims, Monatsh. Chem. 1963, 94, 677–680.
[26] C. Koch, H. Görls, M. Westerhausen, Acta Crystallogr., Sect.
E 2007, 63, m2633–m2634.
[27] M. Westerhausen, A. Kneifel, P. Mayer, H. Nöth, Z. Anorg.
Allg. Chem. 2004, 630, 2013–2021.
[28] D. Olbert, A. Kalisch, H. Görls, I. M. Ondik, M. Reiher, M.
Westerhausen, Z. Anorg. Allg. Chem. 2009, 635, 462–470.
[29] COLLECT, Data Collection Software, Nonius B. V., The Ne-
therlands, 1998.
Acknowledgments
This work was generously supported by the Deutsche Forschungs-
gemeinschaft (DFG, Bonn–Bad Godesberg, Germany). We are also
grateful to the Fonds der Chemischen Industrie (Frankfurt/Main,
Germany) for supporting our research.
[1] M. Westerhausen, T. Bollwein, N. Makropoulos, T. M. Rotter,
T. Habereder, M. Suter, H. Nöth, Eur. J. Inorg. Chem. 2001,
851–857.
[30] “Processing of X-ray Diffraction Data Collected in Oscillation
Mode”: Z. Otwinowski, W. Minor in Methods in Enzymology,
vol. 276 (Macromolecular Crystallography, Part A) (Eds.: C. W.
Carter, R. M. Sweet), Academic Press, 1997, pp. 307–326.
[31] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467–473.
[32] G. M. Sheldrick, SHELXL-97 (version 97.2), University of
Göttingen, Germany, 1997.
[2] M. Westerhausen, T. Bollwein, N. Makropoulos, S. Schnei-
derbauer, M. Suter, H. Nöth, P. Mayer, H. Piotrowski, K. Pol-
born, A. Pfitzner, Eur. J. Inorg. Chem. 2002, 389–404.
[3] M. Westerhausen, T. Bollwein, P. Mayer, H. Piotrowski, A.
Pfitzner, Z. Anorg. Allg. Chem. 2002, 628, 1425–1432.
[4] M. Westerhausen, A. N. Kneifel, I. Lindner, J. Grcic´, H. Nöth,
ˇ
Received: January 16, 2010
Z. Naturforsch., Teil B 2004, 59, 161–166.
Published Online: March 11, 2010
Eur. J. Inorg. Chem. 2010, 1791–1797
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
1797