Journal of the American Chemical Society
Communication
Chem. 1999, 64, 6750−6755. (c) Shimizu, H.; Onitsuka, S.; Egami, H.;
Katsuki, T. J. Am. Chem. Soc. 2005, 127, 5396−5413. (d) Mitsudome,
T.; Noujima, A.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Green Chem.
previous studies of alcohol oxidation, whereby the Cu/TEMPO
catalyst shows excellent steric discrimination, even between two
different primary alcohols. The Cu/ABNO catalyst shows
higher overall reactivity and is particularly effective in the
lactonization of symmetrical diols, as well as electronically
differentiated primary alcohols (cf. 28a). The collective features
of these reactions, including the predictable nature of the
selectivity/activity trends, the broad functional group tolerance
of the catalysts, and the ability to perform the reactions at room
temperature with ambient air as the oxidant, suggest that these
reactions could find widespread application for the synthesis of
lactones.
2009, 11, 793−797. (e) Endo, Y.; Backvall, J.-E. Chem.Eur. J. 2011,
̈
17, 12596−12601. (f) Díaz-Rodríguez, A.; Lavandera, I.; Kanbak-Aksu,
́
S.; Sheldon, R. A.; Gotor, V.; Gotor-Fernandez, V. Adv. Synth. Catal.
2012, 354, 3405−3408. (g) Chung, K.; Banik, S. M.; De Crisci, A. G.;
Pearson, D. M.; Blake, T. R.; Olsson, J. V.; Ingram, A. J.; Zare, R. N.;
Waymouth, R. M. J. Am. Chem. Soc. 2013, 135, 7593−7602. (h) Blake,
T. R.; Waymouth, R. M. J. Am. Chem. Soc. 2014, 136, 9252−9255.
(5) For reviews, see: (a) Ryland, B. L.; Stahl, S. S. Angew. Chem., Int.
Ed. 2014, 53, 8824−8838. (b) Cao, Q.; Dornan, L. M.; Rogan, L.;
Hughes, N. L.; Muldoon, M. J. Chem. Commun. 2014, 50, 4524−4543.
(6) (a) Kumpulainen, E. T. T.; Koskinen, A. M. P. Chem.Eur. J.
2009, 15, 10901−10911. (b) Hoover, J. M.; Stahl, S. S. J. Am. Chem.
Soc. 2011, 133, 16901−16910. (c) Steves, J. E.; Stahl, S. S. J. Am.
Chem. Soc. 2013, 135, 15742−15745. (d) Sasano, Y.; Nagasawa, S.;
Yamazaki, M.; Shibuya, M.; Park, J.; Iwabuchi, Y. Angew. Chem., Int. Ed.
2014, 53, 3236−3240.
ASSOCIATED CONTENT
* Supporting Information
■
S
Full reaction development data, experimental procedures, and
product characterization data. This material is available free of
(7) Numerous catalyst oxidative and dehydrogenative routes have
been explored for the preparation of this lactone. See refs 1c, 4b, 4h,
and the following: (a) Guest, H. R.; Kiff, B. W. U.S. Patent 2,900,395,
1959. (b) Forschner, T. C. U.S. Patent 5,310,945, 1994. (c) Kaneda,
K.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K. Molecules 2010, 15,
8988−9007. (d) Musa, S.; Shaposhnikov, I.; Cohen, S.; Gelman, D.
Angew. Chem., Int. Ed. 2011, 50, 3533−3537.
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†School of Chemistry and Chemical Engineering, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240,
China.
(8) Mechanistic studies have shown that the rate of these reactions
depends on the partial pressure of O2 and can be affected by mass
transfer into solution. The slightly longer reaction time in Figure 2
relative to that in Figure 1 reflects the larger reaction scale, which can
affect gas−liquid mixing. For details, see: (a) Hoover, J. M.; Ryland, B.
L.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 2357−2367. (b) Hoover, J.
M.; Ryland, B. L.; Stahl, S. S. ACS Catal. 2013, 3, 2599−2605.
(c) Rogan, L.; Hughes, N. L.; Cao, Q.; Dornan, L. M.; Muldoon, M. J.
Catal. Sci. Technol. 2014, 4, 1720−1725.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the DOE for financial support of this work
(DE-FG02-05ER15690) and Sigma-Aldrich for generous
donation of samples of ABNO.
(9) For mechanistic studies that provide insights into the origin of
the different steric effects in the Cu/TEMPO and Cu/ABNO catalyst
systems, see ref 13.
́
(10) Fetizon, M.; Golfier, M.; Louis, J. M. J. Chem. Soc. D 1969,
REFERENCES
■
1118−1119.
(1) (a) Jefford, C. W.; Jaggi, D.; Sledeski, A. W.; Boukouvalas, J. In
Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier:
Amsterdam, 1989; Vol. 3, part B, pp 157−171. (b) Procter, G. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming. I., Ley, S. V.,
Eds.; Pergamon: Oxford, 1991; pp 305−327. (c) Libiszowski, J.;
(11) Full product distributions for the substrates in Table 2 are
provided in Supporting Information Table S3.
(12) For leading references describing diol lactonization to afford
seven- and eight-membered lactones, see refs 3c, 4e, and the following:
(a) Jung, H. M.; Choi, J. H.; Lee, S. O.; Kim, Y. H.; Park, J. H.; Park, J.
Organometallics 2002, 21, 5674−5677. (b) Nicklaus, C. M.; Phua, P.
H.; Buntara, T.; Noel, S.; Heeres, H. J.; de Vries, J. G. Adv. Synth.
Catal. 2013, 355, 2839−2844.
́
Kowalski, A.; Szymanski, R.; Duda, A.; Raquez, J.-M.; Degee, P.;
Dubois, P. Macromolecules 2004, 37, 52−59. (d) Williams, C. K. Chem.
Soc. Rev. 2007, 36, 1573−1580.
(2) For leading references on methods that employ stoichiometric
(13) Ryland, B. L.; McCann, S. D.; Brunold, T. C.; Stahl, S. S. J. Am.
Chem. Soc. 2014, 136, 12166−12173.
́
oxidants, see the following. Cr oxides: (a) Tojo, G.; Fernandez, M.
Oxidation of Alcohols to Aldehydes and Ketones; Springer: New York,
2010. (b) Kim, K. S.; Szarek, W. A. Carbohydr. Res. 1982, 104, 328−
333. MnO2: (c) Bagley, M. C.; Lin, Z.; Phillips, D. J.; Graham, A. E.
Tetrahedron Lett. 2009, 50, 6823−6825. NaBrO3: (d) Kageyama, T.;
Kawahara, S.; Kitamura, K.; Ueno, Y.; Okawara, M. Chem. Lett. 1983,
1097−1100. (e) Morimoto, T.; Hirano, M.; Iwasaki, K.; Ishikawa, T.
Chem. Lett. 1994, 53−54.
(14) The most successful precedents employ hydrogen-transfer
catalysis (e.g., with acetone as the H2 acceptor). The functional group
compatibility of these methods has not been demonstrated or
explored. For leading references, see: (a) Murahashi, S.; Ito, K.;
Naota, T.; Maeda, Y. Tetrahedron Lett. 1981, 22, 5327−5330. (b) Ishii,
Y.; Suzuki, K.; Ikariya, T.; Saburi, M.; Yoshikawa, S. J. Org. Chem.
1986, 51, 2822−2824. (c) Lin, Y.; Zhu, X.; Zhou, Y. J. Organomet.
Chem. 1992, 429, 269−274. (d) Suzuki, T.; Morita, K.; Tsuchida, M.;
Hiroi, K. Org. Lett. 2002, 4, 2361−2363. (e) Ito, M.; Shiibashi, A.;
Ikariya, T. Chem. Commun. 2011, 47, 2134−2136.
(3) For leading references on catalytic lactonization methods, see the
following. TEMPO/bleach and TEMPO/PhI(OAc)2: (a) Hansen, T.
M.; Florence, G. J.; Lugo-Mas, P.; Chen, J.; Abrams, J. N.; Forsyth, C.
J. Tetrahedron Lett. 2003, 44, 57−59. (b) Bruckner, C. In Stable
̈
Radicals: Fundamental and Applied Aspects of Odd-Electron Compounds;
Hicks, R. G., Ed.; John Wiley & Sons: New York, 2010; pp 433−460.
(c) Ebine, M.; Suga, Y.; Fuwa, H.; Sasaki, M. Org. Biomol. Chem. 2010,
8, 39−42. TPAP/NMO: (d) Bloch, R.; Brillet, C. Synlett 1991, 892−
830. Heteropolyacids/H2O2: (e) Ishii, Y.; Yoshida, T.; Yamawaki, K.;
Ogawa, M. J. Org. Chem. 1988, 53, 5549−5552.
(4) For important precedents for aerobic oxidative lactonization of
diols, see: (a) Aït-Mohand, S.; Muzart, J. J. Mol. Catal. A 1998, 129,
135−139. (b) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org.
3770
J. Am. Chem. Soc. 2015, 137, 3767−3770