4694
A.W. Schammel et al. / Tetrahedron 66 (2010) 4687–4695
4. (a) Carle, J. S.; Christophersen, C. J. Am. Chem. Soc. 1979, 101, 4012–4013; (b)
Holst, P. B.; Anthoni, U.; Christophersen, C.; Nielsen, P. H. J. Nat. Prod. 1994, 57,
997–1000.
26. For the use of H2O/AcOH to facilitate the Fischer indole synthesis, see: (a)
´
´
Desaty, D.; Keglevic, D. Croat. Chem. Acta 1964, 36, 103–109; (b) Keglevic, D.;
Stojanac, N.; Desaty, D. Croat. Chem. Acta 1961, 33, 83–88.
5. For a pertinent review, see: Steven, A.; Overman, L. E. Angew. Chem., Int. Ed.
2007, 46, 5488–5508.
27. Interestingly, the reaction between N-methylphenylhydrazine (26) and lactol
29 in 1:1 H2O/AcOH leads to the desired product, albeit with significant (ca. 20–
30%) formation of NH furoindoline 30.
28. Attempts to generate furoindoline 30 from i and 29 using Buchwald’s meth-
odology were unsuccessful despite an extensive survey of acidic conditions. For
Buchwald’s modification of the Fischer indole synthesis, see: Wagaw, S.; Yang,
B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 6621–6622.
6. (a) Nakao, Y.; Yeung, B. K. S.; Yoshida, W. Y.; Scheuer, P. J.; Kelly-Borges, M. J. Am.
Chem. Soc. 1995, 117, 8271–8272; (b) Yeung, B. K. S.; Nakao, Y.; Kinnel, R. B.;
Carney, J. R.; Yoshida, W. Y.; Scheuer, P. J.; Kelly-Borges, M. J. Org. Chem. 1996, 61,
7168–7173; (c) Nakao, Y.; Kuo, J.; Yoshida, W. Y.; Kelly, M.; Scheuer, P. J. Org. Lett.
2003, 5, 1387–1390; (d) Takayama, H.; Mori, I.; Kitajima, M.; Aimi, N.; Lajis, N. H.
Org. Lett. 2004, 6, 2945–2948.
7. For synthetic studies, see: (a) Newhouse, T.; Baran, P. S. J. Am. Chem. Soc. 2008,
130, 10886–10887; (b) Newhouse, T.; Lewis, C. A.; Baran, P. S. J. Am. Chem. Soc.
2009, 131, 6360–6361; (c) Marsden, S. P.; Watson, E. L.; Raw, S. A. Org. Lett. 2008,
10, 2905–2908; (d) Toumi, M.; Couty, F.; Marrot, J.; Evano, G. Org. Lett. 2008, 10,
5027–5030; (e) Espejo, V. R.; Rainier, J. D. J. Am. Chem. Soc. 2008, 130, 12894–
12895; (f) Matsuda, Y.; Kitajima, M.; Takayama, H. Org. Lett. 2008, 10, 125–128.
8. (a) Subramaniam, G.; Hiraku, O.; Hayashi, M.; Koyano, T.; Komiyama, K.; Kam,
T.-S. J. Nat. Prod. 2007, 70, 1783–1789; (b) Jagetia, G.; Baliga, M. S.; Venkatesh, P.;
Ulloor, J. N.; Mantena, S. K.; Genebriera, J.; Mathuram, V. J. Pharm. Pharmacol.
Me
Ph
Ph
Me
H+
O
+
N
N
H
O
N
H
H
HO
i
29
30
not observed
.
29. Efforts to synthesize furoindoline products from the reaction of aryl hydrox-
ylamine derivatives and 29 were not successful.
´
´
2005, 57, 1213–1219; (c) Ramırez, A.; Garcıa-Rubio, S. Curr. Med. Chem. 2003, 10,
1891–1915.
Me
Me
9. For pertinent total syntheses, see: (a) Dounay, A. B.; Humphreys, P. G.; Over-
man, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368–5377; (b) Shen, L.;
Zhang, M.; Wu, Y.; Qin, Y. Angew. Chem., Int. Ed. 2008, 47, 3618–3621; (c) Jones,
S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606–
13607; (d) Zhang, M.; Huang, X.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2009, 131,
6013–6020.
H+
O
+
OH
N
R
O
N
R
H
HO
R = Me or Ac
29
not observed
10. For isolation, see: (a) Verbitski, S. M.; Mayne, C. L.; Davis, R. A.; Concepcion, G.
P.; Ireland, C. M. J. Org. Chem. 2002, 67, 7124–7126 For the total synthesis of
(ꢁ)-12, see: (b) Fuchs, J. R.; Funk, R. L. J. Am. Chem. Soc. 2004, 126, 5068–5069.
11. (a) Numata, A.; Takahashi, C.; Ito, Y.; Takada, T.; Kawai, K.; Usami, Y.; Matsu-
mura, E.; Imachi, M.; Ito, T.; Hasegawa, T. Tetrahedron Lett. 1993, 34, 2355–
2358; (b) Jadulco, R.; Edrada, R. A.; Ebel, R.; Berg, A.; Schaumann, K.; Wray, V.;
Steube, K.; Proksch, P. J. Nat. Prod. 2004, 67, 78–81. For a comprehensive re-
view, see: (c) Siengalewicz, P.; Gaich, T.; Mulzer, J. Angew. Chem., Int. Ed. 2008,
47, 8170–8176.
12. For biological studies, see: (a) Williams, N. S.; Burgett, A. W. G.; Atkins, A. S.;
Wang, X.; Harran, P. G.; McKnight, S. L. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
2074–2079; (b) Wang, G.; Shang, L.; Burgett, A. W. G.; Harran, P. G.; Wang, X.
Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 2068–2073. For a review of synthetic
studies, see: (c) Lachia, M.; Moody, C. J. Nat. Prod. Rep. 2008, 25, 227–253.
13. Kam, T.-S.; Tan, S.-J.; Ng, S.-K.; Komiyama, K. Org. Lett. 2008, 10, 3749–3752.
14. For examples of pyrrolidinoindoline and furoindoline syntheses from
substituted indoles, see: (a) Depew, K. M.; Marsden, S. P.; Zatorska, D.; Zatorski,
A.; Bornmann, W. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11953–11963;
(b) Austin, J. F.; Kim, S. G.; Sinz, C. J.; Xiao, W. J.; MacMillan, D. W. C. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5482–5487; (c) Movassaghi, M.; Schmidt, M. A. An-
gew. Chem., Int. Ed. 2007, 46, 3725–3728; (d) Kim, J.; Ashenhurst, J. A.; Mo-
vassaghi, M. Science 2009, 324, 238–241.
15. For examples of pyrrolidinoindoline and furoindoline syntheses from
substituted oxindoles, see: (a) Matsuura, T.; Overman, L. E.; Poon, D. J. J. Am.
Chem. Soc. 1998, 120, 6500–6503; (b) Trost, B. M.; Zhang, Y. J. Am. Chem. Soc.
2006, 128, 4590–4591.
16. For a preliminary communication describing this chemistry, see: Boal, B. W.;
Schammel, A. W.; Garg, N. K. Org. Lett. 2009, 11, 3458–3461.
17. For reviews, see: (a) Robinson, B. Chem. Rev. 1963, 63, 373–401; (b) Robinson, B.
Chem. Rev. 1969, 69, 227–250.
18. (a) Fischer, E.; Jourdan, F. Ber. 1883, 16, 2241–2245; (b) Fischer, E.; Hess, O. Ber.
1884, 17, 559–568.
30. Gue´ritte-Voegelein, F.; Se´venet, T.; Pusset, J.; Adeline, M.-T.; Gillet, B.; Beloiel,
J.-C.; Gue´nard, D.; Potier, P.; Rasolonjanahary, R.; Kordon, C. J. Nat. Prod. 1992,
55, 923–930.
31. May, J. A.; Stoltz, B. M. Tetrahedron 2006, 62, 5262–5271.
32. The N-sulfonyl group of pyrrolidinoindoline products could also be removed
using Na2K–SG(1), a solid-supported alkali metal reagent developed by SiGNa
Chemistry, Inc.; see: Nandi, P.; Redko, M. Y.; Petersen, K.; Dye, J. L.; Lefenfeld,
M.; Vogt, P. F.; Jackson, J. E. Org. Lett. 2008, 10, 5441–5444.
33. For syntheses of 2, see Ref. 15a and the following: (a) Kulkarni, M. G.; Dhondge,
A. P.; Borhade, A. S.; Gaikwad, D. D.; Chavhan, S. W.; Shaikh, Y. B.; Nigdale, V. B.;
Desai, M. P.; Birhade, D. R.; Shinde, M. P. Eur. J. Org. Chem. 2009, 3875–3877; (b)
Shao, Z.; Zhang, H. Youji Huaxue 2005, 25, 282–289; (c) Sunazuka, T.; Yoshida,
K.; Kojima, N.; Shirahata, T.; Hirose, T.; Handa, M.; Yamamoto, D.; Harigaya, Y.;
Kuwajima, I.; Omura, S. Tetrahedron Lett. 2005, 46, 1459–1461; (d) Zhang, T. Y.;
Zhang, H. Tetrahedron Lett. 2002, 43, 1363–1365; (e) Morales-Rı´os, M. S.; San-
tos-Sa´nchez, N. F.; Joseph-Nathan, P. J. Nat. Prod. 2002, 65, 136–141; (f) Tanaka,
K.; Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. 2001, 42, 1049–1052; (g)
ElAzab, A. S.; Taniguchi, T.; Ogasawara, K. Org. Lett. 2000, 2, 2757–2759; (h)
Ishibashi, H.; Kobayashi, T.; Machida, N.; Tamura, O. Tetrahedron 2000, 56,
1469–1473; (i) Node, M.; Hao, X.-J.; Nishide, K.; Fuki, K. Chem. Pharm. Bull. 1996,
44, 715–719; (j) Yu, Q. S.; Lu, B. Y. Heterocycles 1994, 39, 519–525; (k) Morales-
´
´
´
´
Rıos, M. S.; Santos-Sanchez, N. F.; Fragoso-Vazquez, M. J.; Alagille, D.; Villago-
mez-Ibarra, J. R.; Joseph-Nathan, P. Tetrahedron 2003, 59, 2843–2853; (l) Clark,
A. J.; Jones, K. Tetrahedron 1992, 48, 6875–6882; (m) Horne, S.; Taylor, N.;
Collins, S.; Rodrigo, R. J. Chem. Soc., Perkin Trans. 1 1991, 3047–3051; (n) Takano,
S.; Moriya, M.; Ogasawara, K. J. Org. Chem. 1991, 56, 5982–5984; (o) Yu, Q.; Liu,
C.; Brzostowska, M.; Chrisey, L.; Brossi, A.; Greig, N. H.; Atack, J. R.; Soncrant, T.
T.; Rapoport, S. I.; Radunz, H. Helv. Chim. Acta 1991, 74, 761–766; (p) Luo, Y.; Yu,
Q.; Chrisey, L.; Brossi, A. Heterocycles 1990, 31, 283–287; (q) Shishido, K.;
Azuma, T.; Shibuya, M. Tetrahedron Lett. 1990, 31, 219–220; (r) Shishido, K.;
Shitara, E.; Komatsu, H.; Hiroya, K.; Fukumoto, K.; Kametani, T. J. Org. Chem.
1986, 51, 3007–3011; (s) Tadamasa, O. Tetrahedron Lett. 1971, 12, 4391–4392; (t)
Dale, F. J.; Robinson, B. J. Pharm. Pharmacol. 1970, 22, 889–896; (u) Longmore, R.
B.; Robinson, B. J. Chem. Soc., Chem. Commun. 1967, 2184–2192.
19. Hydrazines could be employed in either free-base form or as the hydrochloric
acid salts.
20. All lactol and hemiaminal substrates were employed as an inconsequential
mixture of diastereomers.
21. Lactols and hemiaminals have previously been employed in modifications of
the Fischer indole synthesis, see: (a) Campos, K. R.; Woo, J. C. S.; Lee, S.; Tillyer,
R. D. Org. Lett. 2004, 6, 79–82; (b) Brodfuehrer, P. R.; Chen, B.-C.; Sattelberg, T.
R.; Smith, P. R.; Reddy, J. P.; Stark, D. R.; Quinlan, S. L.; Reid, J. G.; Thottathil, J. K.;
Wang, S. J. Org. Chem. 1997, 62, 9192–9202; (c) Adachi, H.; Palaniappan, K. K.;
Ivanov, A. A.; Bergman, N.; Gao, Z.-G.; Jacobson, K. A. J. Med. Chem. 2007, 50,
1810–1827.
34. Srivastava, S.; Ruane, P. H.; Toscano, J. P.; Sullivan, M. B.; Cramer, C. J.; Chiap-
perino, D.; Reed, E. C.; Falvey, D. E. J. Am. Chem. Soc. 2000, 122, 8271–8278.
35. For syntheses of 5, see Ref. 14d and the following: (a) Rivera-Becerril, E.;
´
Joseph-Nathan, P.; Pe´rez-Alvarez, V. M.; Morales-Rı´os, M. S. J. Med. Chem. 2008,
51, 5271–5284; (b) Cardoso, A. S. P.; Marques, M. M. B.; Srinivasan, N.; Prab-
hakar, S.; Lobo, A. M. Tetrahedron 2007, 63, 10211–10225; (c) Miyamoto, H.;
Okawa, Y.; Nakazaki, A.; Kobayashi, S. Tetrahedron Lett. 2007, 48, 1805–1808; (d)
Lo´pez-Alvarado, P.; Caballero, E.; Avendan˜o, C.; Mene´ndez, J. C. Org. Lett. 2006,
8, 4303–4306; (e) Dix, A. V.; Meseck, C. M.; Lowe, A. J.; Mitchell, M. O. Bioorg.
Med. Chem. Lett. 2006, 16, 2522–2524; (f) Morales-Rı´os, M. S.; Rivera-Becerril,
E.; Joseph-Nathan, P. Tetrahedron: Asymmetry 2005, 16, 2493–2499; (g) Tan, G.
H.; Zhu, X.; Ganesan, A. Org. Lett. 2003, 5, 1801–1803; (h) Cardoso, A. S.; Sri-
nivasan, N.; Lobo, A. M.; Prabhakar, S. Tetrahedron Lett. 2001, 42, 6663–6666; (i)
22. See Supplementary data for details.
23. (a) Grandberg, I. I.; Zuyanova, T. I.; Afonina, N. I.; Ivanova, T. A. Dokl. Akad. Nauk
SSSR 1967, 176, 583–585. For a synthesis of furoindolines, albeit in modest yield,
see: (b) Grandberg, I. I.; Tokmakov, G. P. Khim. Geterotsikl. Soedin. 1975,
207–210.
24. Takano et al. has synthesized a pyrrolidinoindoline product using an inter-
rupted Fischer indolization reaction; see: (a) Takano, S.; Moriya, M.; Iwabuchi,
Y.; Ogasawara, K. Chem. Lett. 1990, 109–112; (b) Takano, S.; Ogasawara, K.;
Iwabuchi, R.; Moriya, M. JP 03112989 A 19910514, 1991.
25. For other examples, see: (a) Tsuji, R.; Nakagawa, M.; Nishida, A. Heterocycles
2002, 58, 587–593; (b) Britten, A. Z.; Bardsley, W. G.; Hill, C. M. Tetrahedron
1971, 27, 5631–5639; (c) Rosenmund, P.; Sadri, E. Liebigs Ann. Chem. 1979, 927–
943; (d) Rosenmund, P.; Gektidis, S.; Brill, H.; Kalbe, R. Tetrahedron Lett. 1989,
30, 61–62; (e) Nishida, A.; Ushigome, S.; Sugimoto, A.; Arai, S. Heterocycles
2005, 66, 181–185.
´
´
Morales-Rıos, M. S.; Suarez-Castillo, O. R.; Trujillo-Serrato, J. J.; Joseph-Nathan,
P. J. Org. Chem. 2001, 66, 1186–1192; (j) Morales-Rı´os, M. S.; Sua´rez-Castillo, O.
R.; Joseph-Nathan, P. J. Org. Chem. 1999, 64, 1086–1087; (k) Somei, M.; Yamada,
F.; Izumi, T.; Nakajou, M. Heterocycles 1997, 45, 2327–2330; (l) Jensen, J.; An-
thoni, U.; Christophersen, C.; Nielsen, P. H. Acta Chem. Scand. 1995, 49, 68–71;
(m) Bruncko, M.; Crich, D.; Samy, R. J. Org. Chem. 1994, 59, 5543–5549; (n)
Muthusubramanian, P.; Carle, J. S.; Christophersen, C. Acta Chem. Scand. Ser. B
1983, B37, 803–807.
36. Khoukhi, N.; Vaultier, M.; Carrie´, R. Tetrahedron 1987, 43, 1811–1822.
37. 42 has previously been converted to debromoflustramine B (5) by reduction
with LiAlH4; see Ref. 35e.