10.1002/chem.201804543
Chemistry - A European Journal
FULL PAPER
path length. Binding constants were evaluated considering
a
1:1
[7]
[8]
[9]
a) C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev.
2015, 115, 3012-3035; b) S. H. A. M. Leenders, R. Gramage-Doria, B.
de Bruin, J. N. H. Reek, Chem. Soc. Rev. 2015, 44, 433-448.
a) P. Dydio, J. N. H. Reek, Chem. Sci. 2014, 5, 2135-2145; b) H. J. Davis,
R. J. Phipps, Chem. Sci. 2017, 8, 864-877; c) A. J. Neel, M. J. Hilton, M.
S. Sigman, F. D. Toste, Nature 2017, 543, 637-646.
stoichiometry and using the software BindFitTM with Nelder-Mead method.
General procedure for the catalytic experiments
In a Schlenk tube the bromopyridine species (41 mg, 0.26 mmol), phenyl
boronic acid (63 mg, 0.52 mmol), a porphyrin species L (1.3×10-2 mmol) if
required, dodecane (20 µL, 8.8×10-2 mmol) and K2CO3 (72 mg, 0.52 mmol)
were suspended in toluene (1.0 mL). After stirring for 5 minutes, 250 µL of
a 5.2×10-3 M solution of Pd(OAc)2 in toluene were added to the mixture
and the Schlenk tube was placed in a pre-heated oil bath (80°C). The
catalytic reactions were followed by GC using dodecane as the internal
standard. The competition experiment was performed by adding also
bromobenzene (27 µL, 0.26 mmol) to the initial toluene suspension.
a) B. Breit, W. Seiche, Pure Appl. Chem. 2006, 78, 249-256; b) J.
Meeuwissen, J. N. H. Reek, Nature Chem. 2010, 2, 615-621.
[10] a) A. M. Lifschitz, M. S. Rosen, C. M. McGuirk, C. A. Mirkin, J. Am. Chem.
Soc. 2015, 137, 7252-7261; b) V. Blanco, D. A. Leigh, V. Marcos, Chem.
Soc. Rev. 2015, 44, 5341-5370; c) M. Schmittel, Chem. Commun. 2015,
51, 14956-14968.
[11] E. Lindback, S. Dawaigher, K. Warnmark, Chem. Eur. J. 2014, 20,
13432-13481.
[12] a) A. J. Kirby, Angew. Chem. Int. Ed. 1996, 35, 707-724; Angew. Chem.
1996, 108, 770-790; b) A. J. Kirby, F. Hollender, From Enzyme Models
to Model Enzymes, RSC Publishing, Cambridge, 2009; c) S. F. M. van
Dongen, J. A. A. W. Elemans, A. E. Rowan, R. J. M. Nolte, Angew. Chem.
Int. Ed. 2014, 53, 11420-11428; Angew. Chem. 2014, 126, 11604-11612.
[13] H. K. A. C. Coolen, J. A. M. Meeuwis, P. W. N. M. van Leeuwen, R. J. M.
Nolte, J. Am. Chem. Soc. 1995, 117, 11906-11913.
Acknowledgements
The research leading to these results has received funding from
the People Programme (Marie Curie Actions) of the European
Union’s Seventh Framework Programme (FP7/2007-2013) under
REA grant agreement n. PCOFUND-GA-2013-609102, through
the PRESTIGE programme coordinated by Campus France.
Financial support from CNRS, Université de Rennes 1, Rennes
Métropole, and Région Bretagne (Stratégie d’Attractivité Durable
and Boost’Europe) is acknowledged.
[14] a) K. M. Kadish, K. M. Smith, R. Guillard, Handbook of Porphyrin Science,
Vol. 1-44, World Scientific, Singapore, 2010-2016; b) I. Beletskaya, V. S.
Tyurin, A. Y. Tsivadze, R. Guillard, C. Stern, Chem. Rev. 2009, 109,
1659-1713.
[15] a) S. Yamaguchi, T. Katoh, H. Shinokubo, A. Osuka, J. Am. Chem. Soc.
2007, 129, 6392-6393; b) H. Yorimitsu, A. Osuka, Asian J. Org. Chem.
2013, 2, 356-373; c) M. Kadri, J. Hou, V. Dorcet, T. Roisnel, L. Bechki,
A. Miloudi, C. Bruneau, R. Gramage-Doria, Chem. Eur. J. 2017, 23,
5033-5043.
[16] (a) D. Leow, G. Li, T.-S. Mei, J.-Q. Yu, Nature 2012, 486, 518-522; (b) L.
Wan, N. Dastbaravardeh, G. Li, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135,
18056-18059; (c) G. Yang, P. Lindovska, D. Zhu, J. Kim, P. Wang, R.-Y.
Tang, M. Movassaghi, J.-Q. Yu, J. Am. Chem. Soc. 2014, 136, 10807-
10813; (d) Y.-F. Yang, G.-J. Cheng, P. Liu, D. Leow, T.-Y. Sun, P. Chen,
X. Zhang, J.-Q. Yu, Y.-D. Wu, K. N. Houk, J. Am. Chem. Soc. 2014, 136,
344-355; (e) G.-J. Cheng, Y.-F, Yang, P. Liu, P. Chen, T.-Y. Sun, G. Li,
X. Zhang, K. N. Houk, J.-Q. Yu, Y.-D. Wu, J. Am. Chem. Soc. 2014, 136,
894-897; (f) R.-Y. Tang, G. Li, J.-Q. Yu, Nature 2014, 507, 215-220; (g)
M. Bera, A. Modak, T. Patra, A. Maji, D. Maiti, Org. Lett. 2014, 16, 5760-
5763; (h) M. Bera, A. Maji, S. K. Sahoo, D. Maiti, Angew. Chem. Int. Ed.
2015, 54, 8515-8519; Angew. Chem. 2015, 127, 8635-8639; (i) Y. Deng,
J.-Q. Yu, Angew. Chem. Int. Ed. 2015, 54, 888-891; Angew. Chem. 2015,
127, 902-905; (j) S. Bag, T. Patra, A. Modak, A. Deb, S. Maity, U. Dutta,
A. Dey, R. Kancherla, A. Maji, A. Hazra, M. Bera, D. Maiti, J. Am. Chem.
Soc. 2015, 137, 11888-11891; (k) T. Patra, S. Bag, R. Kancherla, A.
Mondal, A. Dey, S. Pimparkar, S. Agasti, A. Modak, D. Maiti, Angew.
Chem. Int. Ed. 2016, 55, 7751-7755; Angew. Chem. 2016, 128, 7882-
7886; (l) M. Bera, S. K. Sahoo, D. Maiti, ACS Catal. 2016, 6, 3575-3579;
(m) A. Modak, A. Mondal, R. Watile, S. Mukherjee, D. Maiti, Chem.
Commun. 2016, 52, 13916-13919; (n) A. Maji, S. Guin, S. Feng, A.
Dahiya, V. K. Singh, P. Liu, D. Maiti, Angew. Chem. Int. Ed. 2017, 56,
14903-14907; Angew. Chem. 2017, 129, 15099-15103; (o) L. Fang, T.
G. Saint-Denis, B. L. H. Taylor, S. Ahlquist, K. Hong, S.-S. Liu, L.-L. Han,
K. N. Houk, J.-Q. Yu, J. Am. Chem. Soc. 2017, 139, 10702-10714; (p) Z.
Zhang, K. Tanaka, J.-Q. Yu, Nature 2017, 543, 538-542; (q) A. Modak,
T. Patra, R. Chowdhury, S. Raul, D. Maiti, Organometallics 2017, 36,
2418-2423; (r) G. Yang, D. Zhu, P. Wang, R.-Y. Tang, J.-Q. Yu, Chem.
Eur. J. 2018, 24, 3434-3438.
Conflict of interest
The authors declare no conflict of interest.
Keywords: supramolecular catalysis • porphyrins • palladium •
pyridines • cross-coupling
[1]
[2]
[3]
[4]
a) R. Noyori, Nature Chem. 2009, 1, 5-6; b) K. Sanderson, Nature 2011,
469, 18-20; c) R. A. Sheldon, Chem. Soc. Rev. 2012, 41, 1437-1451; d)
G. Rothenberg, Catalysis: Concepts and Green Applications, Wiley-VCH,
Weinheim, 2008; e) M. Beller, Chem. Soc. Rev. 2011, 40, 4891-4892.
a) J. F. Hartwig, Organotransition Metal Chemistry: From Bonding to
Catalysis, University Science Books, Sausalito, 2009; b) A. de Meijere,
S. Braese, M. Oestreich, Metal-Catalyzed Cross-Coupling Reactions and
More, Wiley- VCH, Weinheim, 2014.
a) P. W. N. M. van Leeuwen, Homogeneous Catalysis: Understanding
the Art, Kluwer, Dordrecht, 2004; b) P. C. J. Kamer, P. W. N. M. van
Leeuwen, Phosphorus(III) Ligands in Homogeneous Catalysis: Design
and Synthesis, Wiley-VCH, Weinheim, 2012.
a) J. P. Stambuli, J. F. Hartwig, Curr. Opin. Chem. Biol. 2003, 7, 420-
426; b) G. Cennari, U. Piarulli, Chem. Rev. 2003, 103, 3071-3100; c) M.
T. Reetz, Angew. Chem. Int. Ed. 2008, 47, 2556-2588; Angew. Chem.
2008, 120, 2592-2626; d) D. W. Robbins, J. F. Hartwig, Science, 2011,
333, 1423-1427.
[5]
[6]
a) M. S. Sigman, K. C. Harper, E. N. Bess, A. Milo, Acc. Chem. Res.
2016, 49, 1292-1301; b) S. Raugei, D. L. DuBois, R. Rousseau, S. Chen,
M.-H. Ho, R. M. Bullock, M. Dupuis, Acc. Chem. Res. 2015, 48, 248-255.
a) P. W. N. M. van Leeuwen, Supramolecular Catalysis, Wiley-VCH,
Weinheim, 2008; b) M. Raynal, P. Ballester, A. Vidal-Ferran, P. W. N. M.
van Leeuwen, Chem. Soc. Rev. 2014, 43, 1660-1733; c) S. Das, G. W.
Brudvig, R. H. Crabtree, Chem. Commun. 2008, 413-424.
[17] a) M. Marty, Z. Clyde-Watson, L. J. Twyman, M. Naksh, J. K. M. Sanders,
Chem. Commun. 1998, 2265-2266; b) M. Nakash, Z. Clyde-Watson, N.
Feeder, J. E. Davies, S. J. Teat, J. K. M. Sanders, J. Am. Chem. Soc.
2000, 122, 5286-5293.
[18] M. Saito, Y. Nishibayashi, S. Uemura, Organometallics 2004, 23, 4012-
4017.
This article is protected by copyright. All rights reserved.