3
2.82–2.78 (m, 2H, CH2), 2.56 (t, 2H, J = 7.1 Hz, CH2), 2.20–
4 (a) O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schu¨pbach, A.
Terfort, D. Zacher, R. A. Fischer and Ch. Wo¨ll, Nat. Mater., 2009,
8, 481–484; (b) O. Shekhah, H. Wang, T. Strunskus, P. Cyganik, D.
Zacher, R. Fischer and C. Wo¨ll, Langmuir, 2007, 23, 7440–7442; (c) J.
Tien, A. Terfort and G. M. Whitesides, Langmuir, 1997, 13, 5349–5355.
5 (a) R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc., 1983, 105, 4481–
4483; (b) E. B. Troughton, C. D. Bain, G. M. Whitesides, R. G. Nuzzo,
D. L. Allara and M. D. Porter, Langmuir, 1988, 4, 365–385; (c) C. D.
Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides and R. G.
Nuzzo, J. Am. Chem. Soc., 1989, 111, 321–335; (d) C. D. Bain, J. Evall
and G. M. Whitesides, J. Am. Chem. Soc., 1989, 111, 7155–7164.
6 (a) C. D. Chidsey and D. N. Loiacono, Langmuir, 1990, 6, 682–691;
(b) H.-J. Himmel, K. Weiss, B. Ja¨ger, O. Dannenberger, M. Grunze
and Ch. Wo¨ll, Langmuir, 1997, 13, 4943–4947; (c) O. Dannenberger,
K. Weiss, H.-J. Himmel, B. Ja¨ger, M. Buck and Ch. Wo¨ll, Thin Solid
Films, 1997, 307, 183–191.
7 (a) R. Arnold, W. Azzam, A. Terfort and Ch. Wo¨ll, Langmuir, 2002,
18, 3980–3992; (b) H.-J. Himmel, A. Terfort and C. Wo¨ll, J. Am. Chem.
Soc., 1998, 120, 12069–12074.
8 (a) Y. Luo, M. Piantek, J. Miguel, M. Bernien, W. Kuch and R. Haag,
Appl. Phys. A: Mater. Sci. Process., 2008, 93, 293–301; (b) S. H. Kang,
H. Ma, M.-S. Kang, K.-S. Kim, A. K.-Y. Jen, M. H. Zareie and M.
Sarikaya, Angew. Chem., Int. Ed., 2004, 43, 1512–1516.
9 (a) P. M. Dietrich, N. Graf, T. Gross, A. Lippitz, B. Schu¨pbach, A.
Bashir, C. Wo¨ll, A. Terfort and W. E. S. Unger, Langmuir, 2010, 26,
3949–3954;(b) J. Liu, B. Schu¨pbach, A. Bashir, O. Shekhah, A. Nefedov,
M. Kind, A. Terfort and Ch. Wo¨ll, Phys. Chem. Chem. Phys., 2010, 12,
4459–4472.
10 (a) M. Zharnikov, S. Frey, H. Rong, Y.-J. Yang, K. Heister, M.
Buck and M. Grunze, Phys. Chem. Chem. Phys., 2000, 2, 3359–3362;
(b) A. Shaporenko, M. Brunnbauer, A. Terfort, M. Grunze and M.
Zharnikov, J. Phys. Chem. B, 2004, 108, 14462–14469; (c) H.-T. Rong,
S. Frey, Y.-J. Yang, M. Zharnikov, M. Buck, M. Wu¨hn, Ch. Wo¨ll and G.
Helmchen, Langmuir, 2001, 17, 1582–1593; (d) W. Azzam, A. Bashir,
A. Terfort, T. Strunskus and Ch. Wo¨ll, Langmuir, 2006, 22, 3647–3655.
11 J. Liu, L. Stratmann, S. Krakert, M. Kind, F. Olbrich, A. Terfort and
1.90 (m, 2H, CH2), 1.53 (s, 9H, -C(CH3)3) 1.33–1.15 (m, 3H, -
CH), 1.14–1.00 (m, 18H, -CH3) ppm. 13C-NMR (CDCl3, 75 MHz):
152.7, 140.7, 139.5, 139.1, 138.2, 137.7, 135.3, 128.9, 127.3, 127.2,
126.9, 126.8, 118.8, 80.5, 34.4, 34.2, 28.3, 25.2, 18.5, 12.7 ppm.
IR (ATR): nmax = 3421 (NH), 3021 (CH-Ar), 2929 (CH–Al), 2865
(CH–Al), 1723 (C=O), 1505, 1156, 810 cm-1. MS (APCI+): m/z
(%) = 478 (100) [H(H2N-(C6H4)3-(CH2)3-STIPS+], 517 (90), 557
(25). C35H49NO2SSi (575.33): calcd. C 72.99, H 8.58, N 2.43, S
5.57; found C 73.09, H 8.77, N 2.27, S 5.71.
(4-Aminoterphenyl-4¢¢yl)ethane-2-thiol (14a)
◦
1
colourless solid, yield 0.39 g (65%), m.p. 227–230 C. H-NMR
(CDCl3, 250 MHz): d = 7.54 (s, 4H, CH-ar), 7.53–7.47 (m,
2H, CH-ar), 7.43–7.34 (m, 2H, CH-ar), 7.25–7.16 (m, 2H, CH-
ar), 6.75–6.65 (m, 2H, CH-ar), 3.67 (brd. s, 2H, NH2), 2.97–
3
2.83 (m, 2H, CH2), 2.83–2.69 (m, 2H, CH2), 1.36 (t, 1H, J =
7.6 Hz, SH) ppm. 13C-NMR (CDCl3, 63 MHz): 145.9, 140.0,
139.2, 138.8, 138.7, 131.0, 129.1, 127.9, 127.2, 127.0, 126.7, 115.4,
39.9, 26.0 ppm. IR (ATR): nmax = 3397, 3320, 3208, 3030 (CH-
ar), 2930 (CH-alk), 2849 (CH-alk), 1601, 1491, 1442, 1400, 1257,
1149, 804 cm-1. MS (ESI+): m/z (%) = 306 (100) [HM]+. C20H19NS
(305.44): calcd. C 78.65, H 6.27, N 4.59, S 10.50; found C 78.42,
H 6.50, N 4.40, S 10.42.
(4-Aminoterphenyl-4¢¢yl)propane-3-thiol (14b)
colourless solid, from 12b: yield 0.18 g (76%), from 13b: yield
0.17 g (100%), m.p. 240 ◦C (dec). 1H-NMR (CDCl3, 250 MHz): d
= 7.54 (s, 4H, CH-ar), 7.51–7.45 (m, 2H, CH-ar), 7.42–7.36 (m,
2H, CH-ar), 7.22–7.15 (m, 2H, CH-ar), 6.74–6.66 (m, 2H, CH-
ar), 3.67 (brd. s, 2H, NH2), 2.81–2.72 (t, 2H,3J = 7.5 Hz, CH2),
Ch. Woll, J. Electron Spectrosc. Relat. Phenom., 2009, 172, 120–127.
12 K. Nishiyama, M. Tsuchiyama, A. Kubo, H. Seriu, S. Miyazaki, S.
Yoshimoto and I. Taniguchi, Phys. Chem. Chem. Phys., 2008, 10, 6935–
6939.
¨
13 (a) T. Nankawa, Y. Suzuki, T. Ozaki, A. J. Francis and T. Ohnuki,
J. Nucl. Sci. Technol., 2008, 45, 251–256; (b) I. Turyan and D. Mandler,
Anal. Chem., 1997, 69, 894–897.
14 (a) M. Manolova, V. Ivanova, D. M. Kolb, H.-G. Boyen, P. Ziemann,
M. Buettner, A. Romanyuk and P. Oelhafen, Surf. Sci., 2005, 590, 146–
153; (b) V. Ivanova, T. Baunach and D. Kolb, Electrochim. Acta, 2005,
50, 4283–4288.
15 (a) J. Komadina, S. Walch, R. Fasching, A. Grossman and F. B.
Prinz, J. Electrochem. Soc., 2008, 155, B1008–B1012; (b) S. Monari,
G. Battistuzzi, M. Borsari, D. Millo, C. Gooijer, G. Zwan, A. Ranieri
and M. Sola, J. Appl. Electrochem., 2008, 38, 885–891.
16 S. Silien, M. Buck, G. Goretzki, D. Lahaye, M. R. Champness, T.
Weidner and M. Zharnikov, Langmuir, 2009, 25, 959–967.
17 J. F. Kang, A. Ulman, S. Liao, R. Jordan, G. Yang and G.-Y. Liu,
Langmuir, 2001, 17, 95–106.
2.51 (dt, 2H, 3J1= J2=7.3 Hz, CH2), 1.91 (tt, 2H,3J1= J2=7.3 Hz,
CH2), 1.31 (t, 1H,3J = 7.9 Hz, SH) ppm. 13C-NMR (CDCl3, 63
MHz): 145.9, 140.3, 139.9, 138.8, 138.6, 131.0, 128.9, 127.9, 127.2,
126.9, 126.6, 115.4, 35.4, 34.0, 24.0 ppm. IR (ATR): nmax = 3325
(NH), 3029 (CH-ar), 2919 (CH-al), 1605, 1491, 1399, 1256, 1144,
807 cm-1. MS (ESI+): m/z (%) = 320 (100) [HM]+. C21H21NS
(319.46): calcd. C 78.95, H 6.63, N 4.38, S 10.04; found C 78.95,
H 6.77, N 4.28, S 10.11.
3
3
Acknowledgements
18 J. F. Kang, J. Zaccaro, A. Ulman and A. Myerson, Langmuir, 2000, 16,
3791–3796.
The authors acknowledge the generous gift of several silanes by the
Wacker AG. Financial support by the DFG through the graduate
school 611 (“Functional materials”) is appreciated.
19 (a) K. P. Fears and R. A. Latour, Langmuir, 2009, 25, 13926–
13933; (b) S. Todorovic, C. Jung, P. Hildebrandt and D. H. Murgida,
JBIC, J. Biol. Inorg. Chem., 2006, 11, 119–127; (c) M. Kondo, Y.
Nakamura, K. Fujii, M. Nagata, Y. Suemori, T. Dewa, K. Iida, A. T.
Gardiner, R. J. Cogdell and M. Nango, Biomacromolecules, 2007, 8,
2457–2463; (d) Y. Arima and H. Iwata, J. Mater. Chem., 2007, 17,
4079–4087; (e) X. Han, A. S. Achalkumar, R. J. Bushby and S. D.
Evans, Chem.–Eur. J., 2009, 15, 6363–6370.
References
1 (a) K. Prime and G. M. Whitesides, Science, 1991, 252, 1164–1167;
(b) K. Prime and G. M. Whitesides, J. Am. Chem. Soc., 1993, 115,
10714–10721.
20 N. Crivillers, C. Munuera, M. Mas-Torrent, C. Simao, S. T. Bromley,
C. Ocal, C. Rovira and J. Veciana, Adv. Mater., 2009, 21, 1177–1181.
21 L. Sun, B. Johnson, T. Wade and R. M. Crooks, J. Phys. Chem., 1990,
94, 8869–8871.
2 (a) L. G. Jensen, K. A. Nielsen, T. Breton, J. L. Sessler, J. O. Jeppesen, E.
Levillain and L. Sanguinet, Chem.–Eur. J., 2009, 15, 8128–8133; (b) C.
Ananthanawat, T. Vilaivan and V. P. Hoven, Sens. Actuators, B, 2009,
137, 215–221; (c) J. H. Bergantin and F. Sevilla, Anal. Lett., 2010, 43,
476–486; (d) E. Climent, R. Casasus, D. Marcos, R. Martinez-Manez,
F. Sancenon and J. Soto, Chem. Commun., 2008, 6531–6533.
3 (a) L. Ban and M. Mrksich, Angew. Chem., Int. Ed., 2008, 47, 3396–
3399; (b) A. G. Frutos, J. M. Brockman and R. M. Corn, Langmuir,
2000, 16, 2192–2197.
22 X.-M. Zhao, L. L. Wilbur and G. M. Whitesides, Langmuir, 1996, 12,
3257–3264.
23 (a) J. Mu¨ller, M. Brunnbauer, M. Schmidt, A. Zimmermann and A.
Terfort, Synthesis, 2005, 6, 998–1004; (b) Y. Hatanaka, K. Goda and Y.
Okahara, Tetrahedron, 1994, 50, 8301–8316; (c) N. Miyaura, T. Yanagi
and A. Suzuki, Synth. Commun., 1981, 11, 513.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 3552–3562 | 3561
©