Moldoveanu et al.
JOCFeatured Article
demonstrated effective pinacolborylation of ortho-substituted
boron source. Later, Marder15 reported a (Cp*RhCl2)2 catalyst
for direct aromatic C-H borylation of benzene, and Smith16
elaborated a very selective catalytic system from (Ind)Ir(COD)
(where Ind is indenyl and COD is 1,5-cyclooctadiene) and biden-
date phosphine ligands, both employing pinacolborane (HBpin)
as an atom-efficient and cost-effective boron source. More
recently, Hartwig and Miyaura have pioneered the use of the
IMH catalyst, a combination of [Ir(COD)(OMe)]2 and di-tert-
aryl iodides,39,40 bromides,39,40 and chlorides40,42 using HB-
42
pin39,40 or B2pin2 as boron sources. Additionally, a few
systematic investigations on the Pd-catalyzed Miyaura pina-
colborylation39 and neopentylglycolborylation43 of ortho-sub-
stituted substrates are available. Recently, Zhu and Ma44a
reported the CuI-catalyzed pinacolborylation of aryl iodides.
This study includes four examples of ortho-substituted sub-
strates. Subsequently, Marder et al. reported a Cu(I)I/PBu3-
catalyzed borylation of aryl iodides and bromides utilizing
1.5 equiv of B2pin2 and bis(neopentylglycolato)diboron
(B2neop2).44b Good yields were obtained for the ortho-
methoxy and ortho-methyl-substituted substrates investi-
gated by Marder’s group. However, aryl chlorides do not
react under these conditions.
butylpyridine (dtbpy), for the direct C-H borylation of arenes
and heteroarenes using B2pin2
17-22
or HBpin23,24 as the boron
source. Direct C-H borylation exhibits regioselectivity domi-
nated by steric interactions.18,25 Thus, ortho-substituted com-
pounds are only produced as the major product when all
meta- and para-positions are already substituted or specific
ortho-directing groups26-28 are present.
Certain functional groups have been shown to mediate
ortho-directed lithiation and facilitate subsequent C-B bond
formation.29-31 Nevertheless, the most general approach for
the synthesis of ortho-substituted arylboronic acids and
esters has been the regiospecific Pd-catalyzed Miyaura boryla-
tion of aryl halides and triflates.32-37,38a Early studies only
presented sporadic examples of ortho-substituted aryl halide
and triflate substrates.33-37,38a Several recent Pd-catalyzed
systems utilizing Buchwald-type39-41 biphenyl ligands have
Previously, our laboratory has developed effective meth-
ods45-49 for the Ni(II)-catalyzed homo- and cross-coupling
of aryl iodides, bromides, chlorides, mesylates, and tosylates
and employed these reactions in the synthesis of building
blocks for self-assembling dendrons and dendrimers and of
other complex architectures.50-53 The use of Ni catalysis in
aromatic borylation54-57 reduces cost by avoiding the use of
precious metals but also harnesses the high reactivity of Ni
toward less reactive aryl halides and pseudohalides, without
the use of complex ligands. For Pd-catalyzed Miyaura
borylation, tetraalkoxydiboron reagents are the most pre-
valent boron source.13,14,32,42,43,58a-58c,59-61 However, they
suffer from high cost58b and multistep synthesis.13,14,58a,59 In
2000, Tour54 disclosed the first Ni(II)-catalyzed borylation
(15) Shimada, S.; Batsanov, A. S.; Howard, J. A. K.; Marder, T. B.
Angew. Chem., Int. Ed. 2001, 40, 2168–2171.
(16) Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R.
Science 2002, 295, 305–308.
(17) Takagi, J.; Sato, K.; Hartwig, J. F.; Ishiyama, T.; Miyaura, N.
Tetrahedron Lett. 2002, 43, 5649–5651.
(18) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.;
Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390–391.
(19) Ishiyama, T.; Takagi, J.; Yonekawa, Y.; Hartwig, J. F.; Miyaura, N.
Adv. Synth. Catal. 2003, 345, 1103–1106.
(20) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.;
Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263–14278.
(21) Murphy, J. M.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129,
15434–15435.
(22) Tzschucke, C. C.; Murphy, J. M.; Hartwig, J. F. Org. Lett. 2007, 9,
761–764.
(23) Ishiyama, T.; Nobuta, Y.; Hartwig, J. F.; Miyaura, N. Chem.
Commun. 2003, 2924–2925.
(24) Murphy, J. M.; Tzschucke, C. C.; Hartwig, J. F. Org. Lett. 2007, 9,
757–760.
(25) Chotana, G. A.; Rak, M. A.; Smith, M. R. J. Am. Chem. Soc. 2005,
127, 10539–10544.
(26) Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534–7535.
(27) Kawamorita, S.; Ohmiya, H.; Hara, K.; Fukuoka, A.; Sawamura,
M. J. Am. Chem. Soc. 2009, 131, 5058–5059.
(28) Ishiyama, T.; Isou, H.; Kikuchi, T.; Miyaura, N. Chem. Commun.
2010, DOI 10.1039/b910298a.
(42) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2007, 46, 5359–5363.
(43) Fang, H.; Kaur, G.; Yan, J.; Wang, B. Tetrahedron Lett. 2005, 46,
1671–1674.
(44) (a) Zhu, W.;Ma, D. Org. Lett. 2006, 8, 261–263. (b) Kleeberg, C.; Dang,
L.; Lin, Z. Y.; Marder, T. B. Angew. Chem., Int. Ed. 2009, 48, 5350–5354.
(45) Percec, V.; Bae, J. Y.; Hill, D. H. J. Org. Chem. 1995, 60, 6895–6903.
(46) Percec, V.; Bae, J. Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060–1065.
(47) Percec, V.; Bae, J. Y.; Zhao, M. Y.; Hill, D. H. J. Org. Chem. 1995,
60, 1066–1069.
(48) Percec, V.; Bae, J. Y.; Zhao, M. Y.; Hill, D. H. J. Org. Chem. 1995,
60, 176–185.
(49) Percec, V.; Golding, G. M.; Smidrkal, J.; Weichold, O. J. Org. Chem.
2004, 69, 3447–3452.
(50) Percec, V.; Bae, J. Y.; Zhao, M. Y.; Hill, D. H. Macromolecules 1995,
28, 6726–6734.
(51) Percec, V.; Holerca, M. N.; Nummelin, S.; Morrison, J. L.; Glodde,
M.; Smidrkal, J.; Peterca, M.; Rosen, B. M.; Uchida, S.; Balagurusamy,
V. S. K.; Sienkowska, M. J.; Heiney, P. A. Chem.;Eur. J. 2006, 12, 6216–
6241.
(29) Sharp, M. J.; Snieckus, V. Tetrahedron Lett. 1985, 26, 5997–6000.
(30) For example: Alo, B. I.; Kandil, A.; Patil, P. A.; Sharp, M. J.;
Siddiqui, M. A.; Snieckus, V. J. Org. Chem. 1991, 56, 3763–3768.
(52) Percec, V.; Won, B. C.; Peterca, M.; Heiney, P. A. J. Am. Chem. Soc.
2007, 129, 11265–11278.
(53) Rosen, B. M.; Wilson, D. A.; Wilson, C. J.; Peterca, M.; Won, B. C.;
Huang, C.; Lipski, L. R.; Zeng, X.; Ungar, G.; Heiney, P. A.; Percec, V. J.
Am. Chem. Soc. 2009, 131, 17500–17521.
ꢀ
(31) Kristensen, J.; Lysen, M.; Vedso, P.; Begtrup, M. Org. Lett. 2001, 3,
1435–1437.
(32) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60,
7508–7510.
(54) Morgan, A. B.; Jurs, J. L.; Tour, J. M. J. Appl. Polym. Sci. 2000, 76,
1257–1268.
(33) Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N. Tetrahedron Lett.
1997, 38, 3447–3450.
(55) Moldoveanu, C.; Wilson, D. A.; Wilson, C. J.; Corcoran, P.; Rosen,
B. M.; Percec, V. Org. Lett. 2009, 11, 4974–4977.
(34) Ishiyama, T.; Ishida, K.; Miyaura, N. Tetrahedron 2001, 57, 9813–9816.
(35) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271–280.
(36) Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62,
6458–6459.
(37) Murata, M.; Sambommatsu, T.; Watanabe, S.; Masuda, Y. Synlett
2006, 1867–1870.
(38) (a) Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. J. Org. Chem.
2000, 65, 164–168. (b) Kochi, J. K. Pure Appl. Chem. 1980, 52, 571–605.
(39) (a) Baudoin, O.; Guenard, D.; Gueritte, F. J. Org. Chem. 2000, 65, 9268–
9271. (b) Wolan, A.; Zaidlewicz, M. Org. Biomol. Chem. 2003, 1, 3274–3276.
(40) Billingsley, K. L.; Buchwald, S. L. J. Org. Chem. 2008, 73, 5589–
5591.
(56) Rosen, B. M.; Huang, C.; Percec, V. Org. Lett. 2008, 10, 2597–2600.
(57) Wilson, D. A.; Wilson, C. J.; Rosen, B. M.; Percec, V. Org. Lett.
2008, 10, 4879–4882.
(58) (a) Ishiyama, T.; Murata, M.; Ahiko, T.-A.; Miyaura, N. Org. Synth.
2000, 77, 176. (b) As per standard academic laboratory suppliers: from $1500
per mole (Sigma-Aldrich for 500 g bottle of B2pin2) to over $10,000 per mole
(Sigma-Aldrich for 1 g bottle of B2pin2). (c) Based on starting materials from
Sigma-Aldrich: approximately $35-$180 per mole depending upon the scale
of the starting materials.
(59) Kennedy, J. W. J.; Hall, D. G. J. Organomet. Chem. 2003, 680, 263–
270.
(60) Aspley, C. J.; Williams, J. A. G. New J. Chem. 2001, 25, 1136–1147.
(61) Willis, D. M.; Strongin, R. M. Tetrahedron Lett. 2000, 41, 8683–
8686.
(41) Broutin, P. E.; Cerna, I.; Campaniello, M.; Leroux, F.; Colobert, F.
Org. Lett. 2004, 6, 4419–4422.
J. Org. Chem. Vol. 75, No. 16, 2010 5439