of The American Chemical Society Petroleum Research Fund.
The EPSRC Mass Spectrometry Service, Swansea, is also
thanked.
Notes and references
‡ Crystal data for 3: C27H42N9P3, M = 585.61, orthorhombic, space group
3
˚
˚
˚
˚
Pbca, a = 19.543(4) A, b = 10.510(2) A, c = 30.197(6) A, V = 6202(2) A ,
Z = 8, Dc = 1.254 g cm-3, F(000) = 2496, m(Mo-Ka) = 0.225 mm-1,
123(2) K, 6767 unique reflections [R(int) 0.0199], R (on F) 0.0375, wR (on
F2) 0.1076 (all data); 4: C18H24N9P3, M = 459.37, hexagonal, space group
3
¯
˚
˚
˚
R3, a = b = 17.456(3) A, c = 12.415(3) A, V = 3276.2(9) A , Z = 6, Dc =
1.397 g cm-3, F(000) = 1440, m(Mo-Ka) = 0.298 mm-1, 123(2) K, 1586
unique reflections [R(int) 0.0548], R (on F) 0.0492, wR (on F2) 0.1311 (all
data); 7·(toluene): C41H58N9P3Pt2, M = 1160.05, monoclinic, space group
Fig. 2 Molecular structure of 7 (25% thermal ellipsoids; hydrogen
◦
˚
˚
˚
◦
P21/n, a = 16.300(3) A, b = 10.424(2) A, c = 28.869(6) A, b = 92.59(3) ,
˚
atoms omitted). Selected bond lengths (A) and angles ( ): Pt(1)–P(1)
3
-3
˚
V = 4900.5(17) A , Z = 4, Dc = 1.572 g cm , F(000) = 2272, m(Mo-Ka) =
5.837 mm-1, 123(2) K, 8596 unique reflections [R(int) 0.0934], R (on F)
0.0653, wR (on F2) 0.1800 (all data).
2.183(3), Pt(1)–P(2) 2.358(4), Pt(1)–P(3) 2.359(3), Pt(1)–Pt(2) 2.6218(8),
P(1)–N(1) 1.654(12), P(1)–C(13) 1.710(13), N(1)–N(2) 1.349(14),
N(2)–N(3) 1.328(15), N(3)–C(13) 1.345(17), Pt(2)–P(2) 2.302(4),
Pt(2)–P(3) 2.304(4), P(2)–C(18) 1.702(14), P(2)–N(4) 1.706(11), N(4)–N(5)
1.376(15), N(5)–N(6) 1.291(16), N(6)–C(18) 1.336(16); P(1)–Pt(1)–P(2)
126.01(13), P(1)–Pt(1)–P(3) 124.65(13), P(2)–Pt(1)–P(3) 108.94(12),
Pt(2)–P(2)–Pt(1) 68.47(10), Pt(2)–P(3)–Pt(1) 68.42(10), N(1)–P(1)–C(13)
88.0(6), C(18)–P(2)–N(4) 87.2(6), N(7)–P(3)–C(23) 85.4(7).
1 See for example (a) S. Trofimenko, Scorpionates, The Coordination
Chemistry of Polypyrazolylborate Ligands, Imperial College Press,
London, 1999; (b) R. R. Schrock, Acc. Chem. Res., 1997, 30, 9; (c) T. A.
Betley and J. C. Peters, Inorg. Chem., 2003, 42, 5074; (d) H. A. Mayer
and W. C. Kaska, Chem. Rev., 1994, 94, 1239.
2 (a) K. Meyer and S. C. Bart, Adv. Inorg. Chem., 2008, 60, 1; (b) C.
Vogel, F. W. Heinemann, J. Sutter, C. Anthon and K. Meyer, Angew.
Chem., Int. Ed., 2008, 47, 2681.
3 (a) F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed., 2008, 47,
3122; (b) W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290.
4 P. Le Floch, Coord. Chem. Rev., 2006, 250, 627.
5 K. B. Dillon, F. Mathey and J. F. Nixon, in Phosphorus: The Carbon
Copy, Wiley, Chichester, 1998.
6 W. Ro¨sch, T. Facklam and M. Regitz, Tetrahedron, 1987, 43, 3247.
7 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004.
8 N. B. Several, examples of P-coordinated 1,2,4,3-triazaphosphole
complexes have been reported. See for example J. G. Kraaijkamp, G.
van Koten, K. Vrieze, D. M. Grove, E. A. Klop, A. L. Spek and A.
Schmidpeter, J. Organomet. Chem., 1983, 256, 375.
platinum(0) triangular clusters, [{(L)Pt(m-L)}3] (L = CO, isonitrile
etc.).15 Another very unusual structural feature of 7 is the fact that
two of its triazaphosphole ligands bridge the Pt–Pt interaction. As
a result, the P-centres of these ligands have distorted tetrahedral
geometries, as opposed to the trigonal planar geometry of P(1).
Despite these differences, the intra-ring geometries of the three
effectively planar heterocycles are similar to each other, and to
that in the free ligand, 3. At this stage we cannot be certain what
the nature of the bonding within the Pt2(m-P) fragments of 7 is,
but it is of note that this bridging mode is comparable to that
exhibited by the phosphabenzene ligand, PC5Ph3-2,4,6 (TPPB),
in the palladium(0) trimer, [{(Et3P)Pd(m-TPPB)}3].19 In that case,
computational studies suggested that both s- and low lying p-
orbitals at phosphorus are involved in bridging its short Pd–Pd
bonds.
In summary, high yield “click” chemistry has been used to
prepare several examples of tris(triazaphosphole)s which are
spatially similar to previously reported tris(NHC) ligands. The
utility of these as a new class of tripodal P3-ligand has been
demonstrated with the preparation of an unusual diplatinum
complex. Studies are under way to systematically investigate the
curious electronic and ligating properties of tris(triazaphosphole)s.
9 N. B. Several, bis- and tris(triazaphosphole) substituted cyanopyridine
compounds have been reported. See for example S. V. Chapyshev, U.
Bergstrasser and M. Regitz, Izv. Akad. Nauk, Ser. Khim., 1996, 252.
10 L. Nyula´szi, T. Veszpre´mi, J. Re´ffy, B. Burkhardt and M. Regitz, J. Am.
Chem. Soc., 1992, 114, 9080.
11 H. Nakai, Y. Tang, P. Gantzel and K. Meyer, Chem. Commun., 2003,
24.
12 M. L. Clarke, Polyhedron, 2001, 20, 151.
13 C. J. Cobley and P. G. Pringle, Inorg. Chim. Acta, 1997, 265, 107.
14 J. Autschbach, C. D. Inga and T. Ziegler, J. Am. Chem. Soc., 2003, 125,
1028.
15 As determined from a survey of the Cambridge Crystallographic
Database, February, 2010.
16 P. Leoni, G. Chiaradonna, M. Pasquali and F. Marchetti, Inorg. Chem.,
1999, 38, 253.
17 T. Yoshida, T. Yamagata, T. H. Tulip, J. A. Ibers and S. Otsuka, J. Am.
Chem. Soc., 1978, 100, 2063.
18 (a) A. Dedieu and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 2074;
(b) P. Pyykko¨, Chem. Rev., 1997, 97, 597.
19 M. T. Reetz, E. Bohres, R. Goddard, M. C. Holthausen and W. Thiel,
Chem.–Eur. J., 1999, 5, 2101.
Acknowledgements
We gratefully acknowledge financial support from the Australian
Research Council (fellowships for CJ and AS), and the donors
5776 | Dalton Trans., 2010, 39, 5774–5776
This journal is
The Royal Society of Chemistry 2010
©