Effect of Naphthoquinone on Pd-Catalyzed Amination of Alkenes
A R T I C L E S
substantial interest.11 Very recently, several successful pal-
ladium-catalyzed intra- and intermolecular oxidative allylic
C-H aminations of unactivated alkenes have been reported.8
White and co-workers reported that the allylic C-H amina-
tion of terminal alkenes can be achieved using a Pd(II)-
sulfoxide catalytic system: a catalytic amount of a Lewis acid
[e.g., (salen)CrIII], or a Brønsted base was required to carry
out the reaction, and a stoichiometric amount of benzoquinone
(BQ) was used as the oxidant.8a,b Although the reactions
produce oxidative amination products with high regioselec-
tivity, the prolonged reaction time (72 h) and high catalyst
loading (10 mol %) limit the utility of this transformation in
organic synthesis. Meanwhile, palladium-catalyzed aerobic
oxidative allylic amination of olefins was reported by our
laboratory, and these reactions also afford linear allylamine
derivatives with highly regioselectivity.8c However, for their
broader applications in organic transformations, we need to
address the following limitations: (1) an excess of the alkene
(3 equiv relative to the nitrogen nucleophile) and high catalyst
loading (10-20 mol %) are required in order to have good
yields; (2) dioxygen pressure (6 atm) is needed to achieve
higher catalytic turnover; (3) a significant degree of double
bond isomerization exists in the products (up to 40%). Herein,
we describe a novel and highly efficient synthetic route to
allylamine derivatives via highly selective palladium-
catalyzed intermolecular oxidative allylic C-H amination.
This new procedure, using PhI(OPiv)2 as the oxidant along
with a substoichiometric amount of naphthoquinone (NQ),
provides major improvements: the olefin can be used as the
limiting reagent, low catalyst loading (1-5 mol %) can be
employed, and reaction times (5-8 h) are shortened.
Furthermore, the detailed mechanistic studies reported here
show that NQ plays a very important role in promoting olefin
coordination to palladium catalyst resulting in turnover-
limiting allylic C-H bond activation to give a π-allyl-Pd
intermediate.
(6) (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005,
127, 14560–14561. (b) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto,
T.; Hiroya, K. Org. Lett. 2007, 9, 2931–2934. (c) Tsang, W. C. P.;
Munday, R. H.; Brasche, G.; Zheng, N.; Buchwald, S. L. J. Org. Chem.
2008, 73, 7603–7610. (d) Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am. Chem.
Soc. 2009, 131, 10806–10807. (e) Wasa, M.; Yu, J.-Q. J. Am. Chem.
Soc. 2008, 130, 14058–14059. (f) Jordan-Hore, J. A.; Johansson,
C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008,
130, 16184–16186. (g) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-
Q. J. Am. Chem. Soc. 2006, 128, 6790–6791. (h) Brasche, G.; Buchwald,
S. L. Angew. Chem., Int. Ed. 2008, 47, 1932–1934. (i) Hamada, T.; Ye,
X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833–835. (j) Shi, Z.; Zhang,
C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed.
2009, 48, 4572–4576.
Results and Discussion
One observation from our previous studies suggests that
the limitation of using excess alkene substrates is due to the
isomerization of terminal alkenes to internal alkenes, which
are ineffective substrates for amination (eq 1).8c,12 To achieve
(7) For the early studies on the intramolecular allylic amination of alkenes
with substrate limitation, see: (a) Hedegus, L. S.; Allen, G. F.; Bozell,
J. J.; Waterman, E. L. J. Am. Chem. Soc. 1978, 100, 5800–5807. (b)
Weider, P. R.; Hegedus, L. S.; Asada, H.; D’Andreq, S. V. J. Org.
Chem. 1985, 50, 4276–4281. (c) Heathcock, C. H.; Stafford, J. A.;
Clark, D. L. J. Org. Chem. 1992, 57, 2575–2585. (d) Larock, R. C.;
Hightower, T. R.; Hasvold, L. A.; Peterson, K. P. J. Org. Chem. 1996,
61, 3584–3585.
(8) For the recent intermolecular allylic amination, see: (a) Reed, S. A.;
Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11701–
11706. (b) Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130,
3316–3318. (c) Liu, G.; Yin, G.; Wu, L. Angew. Chem., Int. Ed. 2008,
47, 4733–4736. For the intramolecular reactions, see: (d) Fraunhoffer,
K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274–7276. (e)
Wu, L.; Qiu, S.; Liu, G. Org. Lett. 2009, 11, 2707–2710. (f) Nahra,
F.; Liron, F.; Prestat, G.; Mealli, C.; Messaoudi, A.; Poli, G.
Chem.sEur. J. 2009, 15, 11078–11082. (g) Beccalli, E. M.; Broggini,
G.; Paladino, G.; Penoni, A.; Zoni, C. J. Org. Chem. 2004, 69, 5627–
5630. For the diamination of alkenes involving allylic C-H activation,
see: (h) Wang, B.; Du, H.; Shi, Y. Angew. Chem., Int. Ed. 2008, 47,
8224–8227.
more efficient transformations of alkenes, alkene isomeriza-
tion must be minimized. Mechanistically, the isomerization
of terminal alkenes is possibly catalyzed by palladium black
or Pd nanoparticles, generated from the catalyst decomposi-
tion due to the rate-limiting mass-transfer of oxygen gas into
solution.13,14 We hypothesized that, if soluble strong oxidants
were used instead of oxygen, the reoxidation of Pd(0) might
be more efficient (Scheme 2). In addition, the strong oxidants
might oxidize the π-allyl-Pd(II) species directly to an allyl-
Pd(IV) intermediate which could undergo reductive elimina-
tion to regenerate Pd(II) (Scheme 3).15 Thus, the minimiza-
tion or elimination of palladium catalyst decomposition might
be expected, which could reduce or inhibit the alkene
isomerization and result a more efficient allylic C-H oxidative
amination.
(9) For selected examples on Pd-catalyzed aerobic oxidative amination
of alkenes, see: (a) Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am.
Chem. Soc. 2003, 125, 12996–12997. (b) Brice, J. L.; Harang, J. E.;
Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005,
127, 2868–2869. (c) Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc.
2005, 127, 17888–17893. (d) Rogers, M. M.; Wendlandt, J. E.; Guzei,
I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257–2260. (e) Rogers, M. M.;
Kotov, V.; Chatwichien, J.; Stahl, S. S. Org. Lett. 2007, 9, 4331–
4334.
Guided by this strategy, we initiated our studies by testing
the reactions of 1-undecene 1a with methyl N-tosylcarbamate
2a catalyzed by Pd(OAc)2 (5 mol %), in the presence of a
(10) For recent examples for Pd-catalyzed oxidative amination of alkenes,
see: (a) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am. Chem. Soc.
2005, 127, 7690–7691. (b) Liu, G.; Stahl, S. S. J. Am. Chem. Soc.
2006, 128, 7179–7181. (c) Desai, L. V.; Sanford, M. S. Angew. Chem.,
Int. Ed. 2007, 46, 5737–5740. (d) Streuff, J.; Ho¨velmann, C. H.;
Nieger, M.; Mun˜iz, K. J. Am. Chem. Soc. 2005, 127, 14586–14587.
(e) Mun˜iz, K. J. Am. Chem. Soc. 2007, 129, 14542–14543. (f) Michael,
F. E.; Sibbald, P. A.; Cochran, B. M. Org. Lett. 2008, 10, 793–796.
(g) Sibbald, P. A.; Michael, F. E. Org. Lett. 2009, 11, 1147–1149. (h)
Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am.
Chem. Soc. 2009, 131, 9488–9489.
(12) There are a lot of palladium black observed in the reaction eq 1.
(13) The catalyst decomposition is possibly resulted by rate-limiting mass-
transfer of oxygen gas into solution, for detail see: Steinhoff, B. A.;
Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 4348–4355, and references
therein.
(14) The alternate pathway for alkene isomerization involving Pd-hydride
species cannot exclude, in which Pd-hydride is generated from the
oxidative addition of HX to Pd(0); for detail see: Amatore, C.; Jutand,
A.; Meyer, G.; Carelli, I.; Chiarotto, I. Eur. J. Inorg. Chem. 2000,
1855–1859.
(11) For the reviews on the allylic amination of alkenes, see: (a) Johannsen,
M.; Jørgensen, K. A. Chem. ReV. 1998, 98, 1689–1708. (b) Mu¨ller,
T. E.; Beller, M. Chem. ReV. 1998, 98, 675–703.
9
J. AM. CHEM. SOC. VOL. 132, NO. 34, 2010 11979