Journal of the American Chemical Society
Communication
Claisen rearrangement using stoichiometric amounts of a chiral Lewis
acid, see: (h) Maruoka, K.; Banno, H.; Yamamoto, H. J. Am. Chem. Soc.
1990, 112, 7791.
REFERENCES
■
(1) Comprehensive Asymmetric Catalysis: Vol. I−III, Suppl. I-II;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York,
1999.
(10) For seminal reports on iridium-catalyzed allylic substitutions, see:
(a) Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 263.
(b) Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025.
(c) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164. For
recent reviews on this topic, see: (d) Hartwig, J. F.; Pouy, M. J. Top.
Organomet. Chem. 2011, 34, 169. (e) Liu, W.-B.; Xia, J.-B.; You, S.-L.
Top. Organomet. Chem. 2012, 38, 155. (f) Tosatti, P.; Nelson, A.;
Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147.
(11) For recent examples of Ir-catalyzed allylic substitutions, see:
(a) Liu, W.-B.; Reeves, C. M.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135,
17298. (b) Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am.
Chem. Soc. 2013, 135, 10626. (c) Chen, W.; Hartwig, J. F. J. Am. Chem.
Soc. 2014, 136, 377. (d) Chen, W.; Hartwig, J. F. J. Am. Chem. Soc. 2013,
135, 2068. (e) Wu, Q.-F.; He, H.; Liu, W.-B.; You, S.-L. J. Am. Chem. Soc.
2010, 132, 11418. (f) Wu, Q.-F.; Liu, W.-B.; Zhuo, C.-X.; Rong, Z.-Q.;
Ye, K.-Y.; You, S.-L. Angew. Chem., Int. Ed. 2011, 50, 4455. (g) Zhang, X.;
Han, L.; You, S.-L. Chem. Sci. 2014, 5, 1059−1063. (h) Polet, D.;
Rathgeb, X.; Falciola, C. A.; Langlois, J.-B.; Hajjaji, S. E.; Alexakis, A.
(2) For selected examples of methods that give access to the full set of
product stereoisomers from the same set of starting materials, see:
(a) Tian, X.; Cassani, C.; Liu, Y.; Moran, A.; Urakawa, A.; Galzerano, P.;
Arceo, E.; Melchiorre, P. J. Am. Chem. Soc. 2011, 133, 17934. (b) Wang,
B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768.
For a recent example based on the use of acidic additives, see: (c) Gao, J.;
Bai, S.; Gao, Q.; Liu, Y.; Yang, Q. Chem. Commun. 2011, 47, 6716. For
examples of a diastereochemical switch induced by a change of ligand,
see: (d) Yan, X.-X.; Peng, Q.; Li, Q.; Zhang, K.; SounYao, J.; Hou, X.-L.;
Wu, Y.-D. J. Am. Chem. Soc. 2008, 130, 14362. (e) Luparia, M.; Oliveira,
M. T.; Audisio, D.; Goddard, R.; Maulide, N. Angew. Chem., Int. Ed.
2011, 50, 12631. For an example of a Lewis acid induced switch, see:
(f) Nojiri, A.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131,
3779. For reports on the strategy of cycle-specific aminocatalysis in fully
stereodivergent reactions, see: (g) Huang, Y.; Walji, A. M.; Larsen, C.
H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051.
(h) Simmons, B.; Walji, A. M.; MacMillan, D. W. C. Angew. Chem., Int.
Chem.Eur. J. 2009, 15, 1205. (i) Dubon, P.; Schelwies, M.; Helmchen,
̈
Ed. 2009, 48, 4349. (i) Chi, Y.; Scroggins, S. T.; Frec
Chem. Soc. 2008, 130, 6322.
́
het, J. M. J. J. Am.
G. Chem.Eur. J. 2008, 14, 6722. (j) Schelwies, M.; Dubon, P.;
̈
Helmchen, G. Angew. Chem., Int. Ed. 2006, 45, 2466.
(3) For an early example of a reaction combining a phosphine
organocatalyst and a Pd catalyst, see: (a) Jellerichs, B. G.; Kong, J.-R.;
Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758. For recent reviews on
combined organo- and metal catalysis, see: (b) Du, Z.; Shao, Z. Chem.
Soc. Rev. 2013, 42, 1337. (c) Allen, A. E.; MacMillan, D. W. C. Chem. Sci.
2012, 3, 633. (d) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999.
(e) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745.
(4) (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M.
Science 2013, 340, 1065. For perspectives on stereodivergent dual
catalysis, see: (b) Schindler, C. S.; Jacobsen, E. N. Science 2013, 340,
1052. (c) Oliveira, M. T.; Luparia, M.; Audisio, D.; Maulide, N. Angew.
Chem., Int. Ed. 2013, 52, 13149.
(5) (a) Tsuji, J. Bull. Chem. Soc. Jpn. 1973, 46, 1896. (b) Tsuji, J.;
Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387.
(6) For selected transition-metal catalyzed enantioselective α-
allylations of carbonyls employing stoichiometric quantities of
enamines, see: (a) Weix, D.; Hartwig, J. F. J. Am. Chem. Soc. 2007,
129, 7720. (b) Liu, D.; Xie, F.; Zhang, W. Tetrahedron Lett. 2007, 48,
7591. (c) Hiroi, K.; Koyama, T.; Anzai, K. Chem. Lett. 1990, 235.
(d) Hiroi, K.; Abe, J. Tetrahedron Lett. 1990, 31, 3623. (e) Hiroi, K.; Abe,
J.; Suya, K.; Sato, S.; Koyama, T. J. Org. Chem. 1994, 59, 203.
(12) For selected examples of direct allylic substitution of branched,
racemic allylic alcohols using catalytic amounts of an Ir(P,olefin)
complex and Brønsted or Lewis acids as activators, see: (a) Defieber, C.;
Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46,
3139. (b) Schafroth, M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. J.
Am. Chem. Soc. 2012, 134, 20276. (c) Hamilton, J. Y.; Sarlah, D.;
Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 994. (d) Hamilton, J. Y.;
Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2013, 52, 7532.
(e) Jeker, O. F.; Kravina, A. G.; Carreira, E. M. Angew. Chem., Int. Ed.
2013, 52, 12166.
(13) (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 794. (b) Franzen
Fielenbach, D.; Wabnitz, T. C.; Kjaersgaard, A.; Jørgensen, K. A. J. Am.
Chem. Soc. 2005, 127, 18296. For selected recent reviews on
́
, J.; Marigo, M.;
asymmetric enamine catalysis, see: (c) Meninno, S.; Lattanzi, A. Chem.
Commun. 2013, 49, 3821. (d) Jensen, K. L.; Dickmeiss, G.; Jiang, H.;
Albrecht, L.; Jo̷rgensen, K. A. Acc. Chem. Res. 2012, 45, 248.
(e) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev.
2007, 107, 5471. For two books covering asymmetric organocatalysis,
see: (f) Dalko, P. I., Ed. Enantioselective Organocatalysis; Wiley:
Weinheim, Germany, 2006. (g) List, B., Ed. Asymmetric Organocatalysis:
Topics in Current Chemistry; Springer: New York, 2009; Vol. 291.
(14) Allylations described in this study produced only branched
isomers according to 1H NMR analysis of the crude reaction mixture.
(15) At the current level of development aliphatic allylic alcohols are
not substrates for the α-allylation of aldehydes we describe.
(7) (a) Ibrahem, I.; Cor
(b) Afewerki, S.; Ibrahem, I.; Rydfjord, J.; Breistein, P.; Cor
́
dova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
́
dova, A.
Chem.Eur. J. 2012, 18, 2972. (c) Zhao, X.; Liu, D.; Xie, F.; Liu, Y.;
Zhang, W. Org. Biomol. Chem. 2011, 9, 1871. For a review of transition-
metal catalyzed allylic substitutions in the stereoselective synthesis of
carbonyls, see: (d) Oliver, S.; Evans, P. A. Synthesis 2013, 3179.
(8) For reports on dual catalytic enantioselective α-allylation of
branched aldehydes, see: (a) Mukherjee, S.; List, B. J. Am. Chem. Soc.
2007, 129, 11336. (b) Yoshida, M.; Terumine, T.; Masaki, E.; Hara, S. J.
Org. Chem. 2013, 78, 10853. For an example of α-allylation of branched
aldehydes using three distinct catalysts, see: (c) Jiang, G.; List, B. Angew.
Chem., Int. Ed. 2011, 50, 9471. For intramolecular dual catalytic aldehyde
allylations, see: (d) Vulovic, B.; Bihelovic, F.; Matovic, R.; Saicic, R. N.
Org. Lett. 2007, 9, 5063. (e) Usui, I.; Schmidt, S.; Breit, B. Org. Lett.
2009, 11, 1453. (f) Chiarucci, M.; di Lillo, M.; Romaniello, A.; Cozzi, P.
G.; Cera, G.; Bandini, M. Chem. Sci. 2012, 3, 2859. (g) Li, M.; Datta, S.;
Barber, D. M.; Dixon, D. J. Org. Lett. 2012, 14, 6350.
(16) Barnes; R. D.; Wood-Kaczmar, M. W.; Curzons, A. D.; Lynch, I.
R.; Richardson; J. E.; Buxton; P. C. U.S. Patent 24721723, 1986.
(17) For selected recent syntheses of (−)-paroxetine, see: (a) Kim, M.-
h.; Park, Y.; Jeong, B.-S.; Park, H.-g.; Jew, S.-s. Org. Lett. 2010, 12, 2826.
(b) Hynes, P. S.; Stupple, P. A.; Dixon, D. J. Org. Lett. 2008, 10, 1389.
(c) Nemoto, T.; Sakamoto, T.; Fukuyama, T.; Hamada, Y. Tetrahedron
Lett. 2007, 48, 4977. (d) Ito, M.; Sakaguchi, A.; Kobayashi, C.; Ikariya, T.
J. Am. Chem. Soc. 2007, 129, 290. (e) Koech, P. K.; Krische, M. J.
́
Tetrahedron 2006, 62, 10594. (f) Brandau, S.; Landa, A.; Franzen, J.;
Marigo, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2006, 45, 4305.
(g) Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
11253. (h) Johnson, T. A.; Curtis, M. D.; Beak, P. J. Am. Chem. Soc.
2001, 123, 1004.
(9) (a) Abraham, L.; Czerwonka, R.; Hiersemann, M. Angew. Chem.,
Int. Ed. 2001, 40, 4700. (b) Akiyama, K.; Mikami, K. Tetrahedron Lett.
2004, 45, 7217. (c) Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2008,
130, 9228. (d) Uyeda, C.; Rotheli, A. R.; Jacobsen, E. N. Angew. Chem.,
̈
Int. Ed. 2010, 49, 9753. (e) Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc.
2011, 133, 5062. (f) Tan, J.; Cheon, C.-H.; Yamamoto, H. Angew. Chem.,
Int. Ed. 2012, 51, 8264. (g) Geherty, M.; Dura, R. D.; Nelson, S. G. J. Am.
Chem. Soc. 2010, 132, 11875. For the first example of an asymmetric
3023
dx.doi.org/10.1021/ja5003247 | J. Am. Chem. Soc. 2014, 136, 3020−3023