2418
M. Christakakou et al.
LETTER
(15) Oi, S.; Fukita, S.; Hirata, N.; Watanuki, N.; Miyano, S.;
2004, 274, 111. (e) Wilson, N. S.; Sarko, C. R.; Roth, G. P.
Org. Process Res. Dev. 2004, 8, 535. (f) Baxendale, I. R.;
Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. K. Chem.
Eur. J. 2006, 12, 4407. (g) Nagaki, A.; Kenmoku, A.;
Moriwaki, Y.; Hayashi, A.; Yoshida, J.-i. Angew. Chem. Int.
Ed. 2010, 49, 7543. (h) Noel, T.; Musacchio, A. J. Org. Lett.
2011, 13, 5180. (i) Noel, T.; Kuhn, S.; Musacchio, A. J.;
Jensen, K. F.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011,
50, 5943.
Inoue, Y. Org. Lett. 2001, 3, 2579.
(16) (a) Dastbaravardeh, N.; Kirchner, K.; Schnürch, M.;
Mihovilovic, M. D. J. Org. Chem. 2012, 78, 658.
(b) Dastbaravardeh, N.; Schnürch, M.; Mihovilovic, M. D.
Eur. J. Org. Chem. 2013, 2878. (c) Dastbaravardeh, N.;
Schnürch, M.; Mihovilovic, M. D. Org. Lett. 2012, 14, 1930.
(d) Dastbaravardeh, N.; Schnürch, M.; Mihovilovic, M. D.
Org. Lett. 2012, 14, 3792.
(7) (a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110,
1147. (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q.
Angew. Chem. Int. Ed. 2009, 48, 5094.
(8) Zhang, L.; Geng, M.; Teng, P.; Zhao, D.; Lu, X.; Li, J.-X.
Ultrason. Sonochem. 2012, 19, 250.
(17) Preparation of 2-Aryl- and 3-Aryl Derivatives 3a–f and
5a–f
To a round-bottomed flask was added the appropriate
amount of 2-bromo- or 3-bromopyridine (1 or 4, 1 equiv, 1
mmol), boronic acid 2a–f (1.2 equiv, 1.2 mmol), K2CO3 (2
equiv, 276 mg, 2 mmol), Pd(PPh3)4 (2.1 mol%, 24 mg, 0.021
mmol), and a dioxane–H2O mixture as solvent (1:1, 20 mL).
The mixture was stirred for 5 min at r.t. and was then filtered
through filter paper, before being transferred to the syringe
pump. The residence time was 23 min, and the temperature
of the heating plate was set to 90 °C. The inner diameter of
the capillary was 1 mm. The flow rate was 0.695 mL/min,
and the volume of the reactor was 16 mL.
(9) For reviews on C–H activation, see: (a) Engle, K. M.; Mei,
T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
(b) Du Bois, J. Chemtracts 2005, 18, 1. (c) Davies, H. M. L.;
Loe, O. Synthesis 2004, 16, 2595. (d) Davies, H. M. L.;
Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (e) Godula,
K.; Sames, D. Science 2006, 312, 67. (f) Yeung, C. S.; Dong,
V. M. Chem. Rev. 2011, 111, 1215. (g) Zhang, C.; Tang, T.;
Jiao, N. Chem. Soc. Rev. 2012, 41, 3464. (h) Ackermann, L.
Chem. Rev. 2011, 111, 1315. (i) Jazzar, R.; Hitce, J.;
Renaudat, A.; Sofack-Kreitzer, J.; Baudoin, O. Chem. Eur. J.
2010, 16, 2654. (j) Schnürch, M.; Dastbaravardeh, N.;
Ghobrial, M.; Mrozek, B.; Mihovilovic, M. D. Curr. Org.
Chem. 2011, 15, 2694.
(10) (a) Sersen, S.; Kljun, J.; Pozgan, F.; Stefane, B.; Turel, I.
Organometallics 2013, 32, 609. (b) Pozgan, F.; Dixneuf, P.
H. Adv. Synth. Catal. 2009, 351, 1737. (c) Oezdemir, I.;
Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.;
Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130,
1156. (d) Oi, S.; Fukita, S.; Inoue, Y. Chem. Commun. 1998,
2439. (e) Yu, B.; Yan, X.; Wang, S.; Tang, N.; Xi, C.
Organometallics 2010, 29, 3222. (f) Yoshikai, N.;
Matsumoto, A.; Norinder, J.; Nakamura, E. Synlett 2010,
313. (g) Prades, A.; Poyatos, M.; Peris, E. Adv. Synth. Catal.
2010, 352, 1155.
(11) (a) Hartman, R. L.; Naber, J. R.; Zaborenko, N.; Buchwald,
S. L.; Jensen, K. V. Org. Process Res. Dev. 2010, 14, 1347.
(b) Noel, T.; Naber, J. R.; Hartman, R. L.; McMullen, J. P.;
Jensen, K. F.; Buchwald, S. L. Chem. Sci. 2011, 2, 287.
(c) Kuhn, S.; Noel, T.; Gu, L.; Heider, P. L.; Jensen, K. V.
Lab-on-a-Chip 2011, 11, 2488.
(12) (a) Koley, M.; Dastbaravardeh, N.; Schnürch, M.;
Mihovilovic, M. D. ChemCatChem 2012, 4, 1696. (b) Chu,
J.-H.; Tsai, S.-L.; Wu, M.-J. ChemInform 2010, 41, 3757.
(13) For reviews, see: (a) Wencel-Delord, J.; Droge, T.; Liu, F.;
Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (b) Arockiam,
P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112,
5879. (c) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev.
2002, 102, 1731. (d) Kakiuchi, F.; Chatani, N. Ruthenium-
Catalyzed Reactions via sp C–H, sp2 C–H, sp3 C–H, and C–
Halogen Bond Activations, In Ruthenium in Organic
Synthesis; Murahashi, S.-I., Ed.; Wiley-VCH: Weinheim,
2004, 219–255.
Reference NMR Spectra for 2-(4-methoxyphenyl)-
pyridine (3d)
1H (200 MHz CDCl3): δ = 3.86 (s, 3 H), 6.95–7.05 (m, 2 H),
7.13–7.23 (m, 1 H), 7.62–7.79 (m, 2 H), 7.90–8.01 (m, 2 H),
8.60–8.71 (m, 1 H). 13C (50 MHz, CDCl3): δ = 55.5 (q),
114.3 (d), 120.0 (d), 121.6 (d), 128.3 (d), 132.1 (s), 136.9 (d),
149.6 (d), 157.2 (s), 160.6 (s).
Preparation of ortho-Arylated 2-Phenylpyridine
Derivatives 7a–e, 8a–f
To a round-bottomed flask was added the appropriate
amount of 2-arylpyridine derivative 7a or 7b (1 equiv, 0.25
mmol), the appropriate bromobenzene derivative 6a–e (3
equiv, 0.75 mmol), DBU (4 equiv, 152 mg, 1 mmol), Ph3P
(10 mol%, 6.5 mg, 0.025 mmol), dichloro(p-
cymene)ruthenium(II) dimer [5 mol%, 7.6 mg, 0.0125
mmol; with the exception of the synthesis of 8f, in which 7.5
mol% of dichloro(p-cymene)ruthenium(II) dimer were used
(7.5 mol%, 11.5 mg, 0.01875 mmol) and NMP as solvent (1
mL)]. The mixture was stirred at r.t. until complete
dissolution of all reagents. Then this solution was transferred
to the syringe pump system. The flow rate was set to 0.533
mL/min which corresponded to a residence time of 30 min,
and the temperature of the heating plate was set to 160 °C.
After pumping through the reaction mixture, 20 mL pure
solvent was pumped through as well. The inner diameter of
the capillary was 1 mm. The volume of the reactor was 16
mL.
Reference NMR spectra for 2-[4′-methoxy-(1,1′-
biphenyl)-2-yl]pyridine (7b)
1H (200MHz, CDCl3): δ = 3.78 (s, 3 H), 6.72–6.82 (m, 2 H),
6.90 (dt, J = 7.8, 1.0 Hz, 1 H), 7.01–7.15 (m, 3 H), 7.33–7.50
(m, 4 H), 7.61–7.73 (m, 1 H). 13C (50 MHz, CDCl3): δ = 55.3
(q), 113.7 (d), 121.4 (d), 125.6 (d), 127.4 (d), 128.6 (d),
130.6 (d), 130.6 (d), 130.9 (d), 133.8 (s), 135.4 (d), 139.5 (s),
140.3 (s), 149.6 (d), 158.6 (s), 159.6 (s).
(14) Oi, S.; Funayama, R.; Hattori, T.; Inoue, Y. Tetrahedron
2008, 64, 6051.
Synlett 2013, 24, 2411–2418
© Georg Thieme Verlag Stuttgart · New York