1196
L.-A. Yeh et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1193–1196
Table 2. Validation of microarray results by quantitative RT-PCR
Gene
Gene expression (fold change relative to untreated, N = 2)
NGF (2 ng/mL)
—
NGF (50 ng/mL)
—
NGF (2 ng/mL)
+2 (15 lM)
RT-PCR
Micro-array
RT-PCR
Micro-array
RT-PCR
Micro-array
Ptprr
Cathepsin L
Sigma-1 receptor
0.91 0.01
1.50 0.90
1.21 0.01
0.90 0.11
1.77 0.15
1.37 0.11
0.64 0.20
2.31 0.10
1.77 0.11
1.04 0.24
2.75 0.25
2.41 0.11
0.39 0.09
3.40 0.25
2.93 0.11
0.37 0.09
3.88 0.82
3.21 0.24
4. Siegel, G. J.; Chauhan, N. B. Brain Res. Rev. 2000, 33,
199.
5. Connor, B.; Dragunow, M. Brain Res. Rev. 1998, 27, 1.
6. Apfel, S. C. Clin. Chem. Lab. Med. 2001, 39, 351.
7. Lad, S. P.; Neet, K. E.; Mufson, E. J. Curr. Drug Targets
CNSNeurol. Disord. 2003, 2, 315.
8. Pollack, S. J.; Harper, S. J. Curr. Drug Targets CNS
Neurol. Disord. 2002, 1, 59.
9. Salehi, A.; Delcroix, J.-D.; Mobley, W. C. Trends Neuro-
sci. 2003, 26, 73.
10. Salehi, A.; Delcroix, J.-D.; Swaab, D. F. J. Neural
Transm. 2004, 111, 323.
11. Li, Y.-S.; Matsunaga, K.; Kato, R.; Ohizumi, Y. J. Nat.
Prod. 2001, 64, 806.
12. Xing, X.; Padmanaban, D.; Yeh, L.-A.; Cuny, G. D.
Tetrahedron 2002, 58, 7903.
encodes for two protein tyrosine phosphatases, PTP-SL,
and PTP-BR7.24 PTP-SL has been shown to down-reg-
ulate the extracellular signal-related protein kinase 5
(ERK5) pathway and to impede translocation of
ERK5 to the nucleus.25 However, endocytosed neuro-
trophin receptors (e.g., TrkA receptor) activated the
ERK5 pathway leading to both enhanced nuclear trans-
location of ERK5 and neuronal survival.26 Thus, the
down-regulation of the Ptprr gene by 2 may result in re-
duced levels of PTP-SL and enhancement of the ERK5
pathway. Other molecules that either down-regulate
Ptprr gene expression or directly inhibit PTP-SL phos-
phatase activity may be found to augment the ERK5
pathway resulting in enhanced neuronal survival.
13. Li, P.; Matsunaga, K.; Yamamoto, K.; Yoshikawa, R.;
Kawashima, K.; Ohizumi, Y. Neurosci. Lett. 1999, 273,
53.
14. Jacovina, A. T.; Zhong, F.; Khazanova, E.; Lev, E.;
Deora, A. B.; Hajjar, K. A. J. Biol. Chem. 2001, 276,
49350.
In summary, the verbenachalcone derivative 2 enhances
NGFꢀs effects on neurite outgrowths and inhibits cas-
pase induction caused by serum starvation. Differential
gene expression profiles of NGF compared to NGF plus
2 revealed a small subset of genes whose expression was
significantly altered. Further studies are needed to delin-
eate the precise mechanism(s) responsible for these two
observed cellular responses to 2. In addition, further
refinement of the structure–activity relationship of verb-
enachalcone could provide more pharmacologically
tractable molecules enabling in vivo evaluation.
15. (a) Some cell loss (10–20%) was observed in the presence
of 2 (1 and 15 lM), but this did not account for the
significant decrease (50–60%) in caspase induction (see
supplementary data); (b) No direct inhibition of caspase-3/7
enzymatic activity was observed in the presence of 2
(15 lM).
16. (a) Lee, N. H.; Weinstock, K. G.; Kirkness, E. E.; Earle-
Hughes, J. A.; Fuldner, R. A.; Marmaros, S.; Glodek, A.;
Gocayne, J. D.; Adams, M. D.; Kerlavage, A. R.; Fraser,
C. M.; Venter, J. C. Proc. Natl. Acad. Sci. U.S.A. 1995, 92,
8303; (b) A 2.6-fold increase in the number of neurites-
bearing cells was observed in the presence of NGF (2 ng/
mL) plus 2 (15 lM) compared with only NGF (2 ng/mL).
This was similar to the results of 2 (15 lM) in Figure 1.
17. Takemori, H.; Katoh, Y.; Horike, N.; Doi, J.; Okamoto,
M. J. Biol. Chem. 2002, 277, 42334.
Acknowledgements
We thankthe Harvard Center for Neurodegeneration
and Repair (HCNR) for financial support.
18. Liuzzo, J. P.; Petanceska, S. S.; Devi, L. A. Mol. Med.
1999, 5, 334.
Supplementary data
19. Arslan, G.; Kontny, E.; Fredholm, B. B. Neuropharma-
cology 1997, 36, 1319.
20. Joseph, R.; Tsang, W.; Dou, D.; Nelson, K.; Edvardsen,
K. Brain Res. 1996, 738, 32.
Supplementary data associated with this article can be
21. Parmar, P. K.; Coates, L. C.; Pearson, J. F.; Hill, R. M.;
Birch, N. P. J. Neurochem. 2002, 82, 1406.
References and notes
22. Sharma, E.; Lombroso, P. J. J. Biol. Chem. 1995, 270, 49.
23. Su, T. P.; Hayashi, T. Curr. Med. Chem. 2003, 10, 2073.
24. Van Den Maagdenberg, A. M.; Bachner, D.; Schepens, J.
T.; Peters, W.; Fransen, J. A.; Wieringa, B.; Hendriks, W.
J. Eur. J. Neurosci. 1999, 11, 3832.
1. Landreth, G. E. In Basic Neurochemistry: Molecular,
Cellular and Medical Aspects, 6th ed.; Siegel, G. J.,
Agranoff, B. W., Albers, R. W., Fisher, S. K., Uhler, M.
D., Eds.; Lippincott Williams & Wilkins: New York, 1998;
Chapter 19, pp 383–398.
25. Buschbeck, M.; Eickhoff, J.; Sommer, M. N.; Ullrich, A.
J. Biol. Chem. 2002, 277, 29503.
2. Kaplan, D. R.; Miller, F. D. Curr. Opin. Neurobiol. 2000,
10, 381.
3. Neet, K. E.; Campenot, R. B. Cell. Mol. Life Sci. 2001, 58,
1021.
26. (a) Watson, F. L.; Heerssen, H. M.; Bhattacharyya, A.;
Klesse, L.; Lin, M. Z.; Segal, R. A. Nat. Neurosci. 2001, 4,
981; (b) Cavanaugh, J. E. Eur. J. Biochem. 2004, 271,
2056.