Niphakis et al.
JOCArticle
Cyclic enaminones, particularly 6-membered enaminones
(2,3-dihydro-4-pyridones), are extraordinarily versatile in-
termediates for the synthesis of piperidine-containing target
molecules. Indeed, this heterocycle exists in numerous drugs
and drug candidates as an indispensable binding element.
Moreover, the piperidine moiety is prevalent in structural
classes of bioactive natural products such as the indolizidines
and quinolizidines.3 Considering the ubiquity of biologically
active piperidine-containing compounds, practical methodo-
logies for the synthesis of these structures, especially those
bearing stereogenic centers, are of great value.
intermediates.11 This method has proven to be enormously
effective in providing advanced intermediates in the synthe-
sis of numerous natural products.12 More recent efforts have
expanded the scope of this chemistry by using an assortment
of chiral auxiliaries.5b,9f,13 Another approach which predates
Comins’ method is the asymmetric hetero-Diels-Alder re-
action of imines with Danishefsky’s diene.14 In this reaction,
the chirality can be derived from various chiral auxiliaries
appended to the imine5b,c,14a-f or through the use of chiral
catalysts.14g-m A noteworthy corollary of this classic [4 þ 2]
approach has recently been reported by the Rovis group15 in
which alkynes and alkenyl isocyanates undergo [2 þ 2 þ 2]
cycloaddition in the presence of a chiral rhodium catalyst.
Although currently limited to the synthesis of the indolizi-
dine enaminones, this method provides rapid access to these
bicyclic molecules with impressive enantioselectivity. De-
spite the success of these asymmetric approaches, innate
limiting factors, such as ring size and substituent constraints,
warranted an exploration of new avenues for the construc-
tion of this useful scaffold.
In pursuit of this goal, we have developed a novel ring-
forming reaction of amino acid-derived ynones to yield
cyclic enaminones.16 Our route accesses the target mole-
cules in high enantiomeric purity by utilizing the chiral pool
strategy to take advantage of the chirality of readily avail-
able starting materials. A notable feature of this methodo-
logy is its power to generate previously unavailable or
circuitously constructed substrates, namely, bicylic enami-
nones, 2,5-disubstituted enaminones, and enaminones with
R- and β-stereocenters. Herein, we present a full disclosure
of our investigations into the scope and mechanism of
this reaction. This concise and operationally facile strategy
gives ready access to novel 6- and 7-membered enaminones
through a vinyl halide intermediate which allows cycli-
zation to proceed through a highly favored 6-endo-trig
pathway.
The synthetic utility of the enaminone is clear when con-
sidering the reactivity of each component moiety (amine,
enamine, enone, and alkene) in isolation. The handles for
modification of this core molecule include four nucleophilic
sites and two electrophilic sites. As depicted in Figure 1,
studies into reactivity of the 6-membered, cyclic enaminones
have made possible a plethora of chemoselective transforma-
tions (e.g., N-functionalization,4 O-functionalization,5 C3,6
C4 [1,2-addition],7 C5,8 and C6 [1,4-addition] functionali-
zation,9 and [2 þ 2] cylization10).
A number of approaches have been developed to construct
the 6-membered enaminone core, yet only a few are capable
of affording nonracemic products (Figure 2). Comins and
co-workers have set precedent for the asymmetric synthe-
sis of enaminones employing chiral N-acylpyridinium
(3) For recent reviews, see: (a) Michael, J. P. In The Alkaloids: Chemistry
and Biology; Academic Press: New York, 2001; Vol. 55, pp 91-258.
(b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139–165. (c) Michael, J. P.
Nat. Prod. Rep. 2007, 24, 191–222. (d) Michael, J. P. Nat. Prod. Rep. 2005, 22,
603–626. (e) Michael, J. P. Nat. Prod. Rep. 2004, 21, 625–649.
(4) For recent examples of N-functionalization, see: (a) Ege, M.; Wanner,
K. T. Org. Lett. 2004, 6, 3553–3556. (b) Garcia, M. O.; Gomez, A. R.; Adrio,
J.; Carretero, J. C. J. Org. Chem. 2007, 72, 10294–10297.
(5) For recent examples of O-functionalization, see: (a) Shintani, R.;
Tokunaga, N.; Doi, H.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 6240–6241.
(b) Klegraf, E.; Knauer, S.; Kunz, H. Angew. Chem., Int. Ed. 2006, 45, 2623–
2626. (c) Knauer, S.; Kunz, H. Tetrahedron: Asymmetry 2005, 16, 529–539.
(6) For recent examples of C3-functionalization, see: (a) Kitagawa, H.;
Kumura, K.; Atsumi, K. Chem. Lett. 2006, 35, 712–713. (b) Donohoe, T. J.;
Johnson, D. J.; Mace, L. H.; Thomas, R. E.; Chiu, J. Y. K.; Rodrigues, J. S.;
Compton, R. G.; Banks, C. E.; Tomcik, P.; Bamford, M. J.; Ichihara, O. Org.
Biomol. Chem. 2006, 4, 1071–1084. (c) Lim, S. H.; Curtis, M. D.; Beak, P.
Org. Lett. 2001, 3, 711–714. (d) Di Bussolo, V.; Fiasella, A.; Romano, M. R.;
Favero, L.; Pineschi, M.; Crotti, P. Org. Lett. 2007, 9, 4479–4482.
(7) For examples of C4-functionalization, see: (a) Comins, D. L.;
Killpack, M. O. J. Am. Chem. Soc. 1992, 114, 10972–10974. (b) Thiel, J.;
Wysocka, W.; Boczon, W. Monatsh. Chem. 1995, 126, 233–239. (c) Meyers,
A. I.; Singh, S. Tetrahedron 1969, 25, 4161–4166.
(8) For recent examples of C5-functionalization, see: (a) Ge, H.; Niphakis,
M. J.; Georg, G. I. J. Am. Chem. Soc. 2008, 130, 3708–3709. (b) Wang, X.;
Turunen, B. J.; Leighty, M. W.; Georg, G. I. Tetrahedron Lett. 2007, 48,
8811–8814. (c) Felpin, F. X. J. Org. Chem. 2005, 70, 8575–8578.
(9) For recent examples of C6-functionalization, see: (a) Sebesta, R.;
Pizzuti, M. G.; Boersma, A. J.; Minnaard, A. J.; Feringa, B. L. Chem.
Commun. 2005, 1711–1713. (b) Nakao, Y.; Chen, J.; Imanaka, H.; Hiyama,
T.; Ichikawa, Y.; Duan, W. L.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc.
2007, 129, 9137–9143. (c) Gini, F.; Hessen, B.; Minnaard, A. J. Org. Lett.
2005, 7, 5309–5312. (d) Jagt, R. B. C.; De Vries, J. G.; Feringa, B. L.;
Minnaard, A. J. Org. Lett. 2005, 7, 2433–2435. (e) Furman, B.; Lipner, G.
Tetrahedron 2008, 64, 3464–3470. (f) Focken, T.; Charette, A. B. Org. Lett.
2006, 8, 2985–2988.
(13) (a) Klegraf, E.; Follmann, M.; Schollmeyer, D.; Kunz, H. Eur. J.
Org. Chem. 2004, 3346–3360. (b) Comins, D. L.; Goehring, R. R.; Joseph,
S. P.; O’Connor, S. J. Org. Chem. 1990, 55, 2574–2576. (c) Hoesl, C. E.;
Maurus, M.; Pabel, J.; Polborn, K.; Wanner, K. T. Tetrahedron 2002, 58,
6757–6770. (d) Streith, J.; Boiron, A.; Paillaud, J. L.; Rodriguez-Perez, E. M.;
Strehler, C.; Tschamber, T.; Zehnder, M. Helv. Chim. Acta 1995, 78, 61–72.
(e) Comins, D. L.; Hong, H. J. Am. Chem. Soc. 1991, 113, 6672–6673.
(f) Follmann, M.; Kunz, H. Synlett 1998, 989–990. (g) Comins, D. L.; Joseph,
S. P.; Goehring, R. R. J. Am. Chem. Soc. 1994, 116, 4719–4728.
(14) For select examples using chiral auxiliaries, see: (a) Zech, G.; Kunz,
H. Chem.;Eur. J. 2004, 10, 4136–4149. (b) Alcaide, B.; Almendros, P.;
Alonso, J. M.; Aly, M. F. Chem.;Eur. J. 2003, 9, 3415–3426. (c) Badorrey,
R.; Cativiela, C.; Diaz de Villegas, M. D.; Galvez, J. A. Tetrahedron 2002, 58,
341–354. (d) Andreassen, T.; Haaland, T.; Hansen, L. K.; Gautun, O. R.
Tetrahedron Lett. 2007, 48, 8413–8415. (e) Kranke, B.; Kunz, H. Can. J.
Chem. 2006, 84, 625–641. (f) Kranke, B.; Hebrault, D.; Schultz-Kukula, M.;
Kunz, H. Synlett 2004, 671–674. For select examples using chiral catalysts,
see: (g) Newman, C. A.; Antilla, J. C.; Chen, P.; Predeus, A. V.; Fielding, L.;
Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7216–7217. (h) Josephsohn, N. S.;
Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 4018–4019.
(i) Shang, D.; Xin, J.; Liu, Y.; Zhou, X.; Liu, X.; Feng, X. J. Org. Chem. 2008,
73, 630–637. (j) Yao, S.; Johannsen, M.; Hazell, R. G.; Jorgensen, K. A.
Angew. Chem., Int. Ed. 1998, 37, 3121–3124. (k) Kobayashi, S.; Komiyama,
S.; Ishitani, H. Angew. Chem., Int. Ed. 1998, 37, 979–981. (l) Jurcik, V.; Arai,
K.; Salter, M. M.; Yamashita, Y.; Kobayashi, S. Adv. Synth. Catal. 2008,
350, 647–651. (m) Cros, J. P.; Perez-Fuertes, Y.; Thatcher, M. J.; Arimori, S.;
Bull, S. D.; James, T. D. Tetrahedron: Asymmetry 2003, 14, 1965–1968.
(15) (a) Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 10775–
10782. (b) Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 12370–12371.
(c) Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2782–2783. (d) Lee,
E. E.; Rovis, T. Org. Lett. 2008, 10, 1231–1234. (e) Yu, R. T.; Lee, E. E.;
Malik, G.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2379–2382.
(10) Comins, D. L.; Zheng, X.; Goehring, R. R. Org. Lett. 2002, 4, 1611–
1613.
(11) Comins, D. L.; Brown, J. D. Tetrahedron Lett. 1986, 27, 4549–4552.
(12) (a) Comins, D. L.; Libby, A. H.; Al-awar, R. S.; Foti, C. J. J. Org.
Chem. 1999, 64, 2184–2185. (b) Comins, D. L.; Zhang, Y. M. J. Am. Chem.
Soc. 1996, 118, 12248–12249. (c) Comins, D. L.; Hong, H. J. Org. Chem.
1993, 58, 5035–5036. (d) Comins, D. L.; Morgan, L. A. Tetrahedron Lett.
1991, 32, 5919–5922. (e) Comins, D. L.; Sandelier, M. J.; Grillo, T. A. J. Org.
Chem. 2001, 66, 6829–6832. (f) Comins, D. L.; Benjelloun, N. R. Tetrahedron
Lett. 1994, 35, 829–832. (g) Comins, D. L.; Sahn, J. J. Org. Lett. 2005, 7,
5227–5228. (h) Comins, D. L.; Zhang, Y. M.; Joseph, S. P. Org. Lett. 1999, 1,
657–659.
(16) Turunen, B. J.; Georg, G. I. J. Am. Chem. Soc. 2006, 128, 8702–8703.
6794 J. Org. Chem. Vol. 75, No. 20, 2010