10.1002/chem.202002026
Chemistry - A European Journal
FULL PAPER
Soc. 2006, 128, 16440-16441; d) N. T. Vo, R. D. M. Pace, F. O'Har, M.
J. Gaunt, J. Am. Chem. Soc. 2008, 130, 404-405; e) J. L. Frie, C. S.
Jeffrey, E. J. Sorensen, Org. Lett. 2009, 11, 5394-5397; f) H. Liang, M.
A. Ciufolini, Org. Lett. 2010, 12, 1760-1763; g) M. Tissot, R. J. Phipps, C.
Lucas, R. M. Leon, R. D. M. Pace, T. Ngouansavanh, M. J. Gaunt, Angew.
Chem. Int. Ed. 2014, 53, 13498-13501; h) R. R. Reddy, S. S. Gudup, P.
Ghorai, Angew. Chem. Int. Ed. 2016, 55, 15115-15119; i) A. E.
Williamson, T. Ngouansavanh, R. D. M. Pace, A. E. Allen, J. D.
Cuthbertson, M. J. Gaunt, Synlett 2016, 27, 116-120; j) R. Coffinier, M.
E. Assal, P. A. Peixoto, C. Bosset, K. Miqueu, J.-M. Sotiropoulos, L.
Pouységu, S. Quideau, Org. Lett. 2016, 18, 1120-1123; k) D. M. Rubush,
M. A. Morges, B. J. Rose, D. H. Thamm, T. Rovis, J. Am. Chem. Soc.
2012, 134, 13554-13557.
phenol substrate is converted into the corresponding phenoxyl
radical, which constitutes the key chain-carrying intermediate. In
turn, the nucleophilic coupling partner needs to become activated
by the coordination to the I(III) center in order to react with the
phenoxyl radical, to generate the product together with a
iodanyl(II) radical that further propagates the chain. The radical-
chain mechanism, as the only one, is able to rationalize all the
features of the reaction. This conclusion is also in a good
agreement with the known propensity of both phenols and
hypervalent iodine(III) regents to undergo single-electron redox
processes. Computational studies aimed at elucidating further
details of the radical pathway are currently underway.
We are convinced that the established mechanism is valid for
the iodine(III)-promoted oxidative dearomatizing hydroxylation
and, with a high degree of confidence, alkoxylation of phenols. As
far as the other dearomatizations of phenols, such as the
spirolactionization, are concerned, we believe that further
experimental studies are needed to draw definite conclusions.
Nevertheless, the presented results provide important new
insights and a framework for understanding and improving the
iodine(III)-mediated reactions involving phenols. They carry also
major implications for the design of novel processes employing
hypervalent iodine reagents and catalysts, including asymmetric
ones.
[4]
[5]
a) T. Dohi, A. Maruyama, M. Yoshimura, K. Morimoto, H. Tohma, Y. Kita,
Angew. Chem. Int. Ed. 2005, 44, 6193-6196; b) R. D. Richardson, T.
Wirth, Angew. Chem. Int. Ed. 2006, 45, 4402-4404; c) T. Dohi, Y.
Minamitsuji, A. Maruyama, S. Hirose, Y. Kita, Org. Lett. 2008, 10, 3559-
3562; d) T. Dohi, Y. Kita, Chem. Commun. 2009, 2073-2085.
Reviews: a) M. Ngatimin, D. W. Lupton, Aust. J. Chem. 2010, 63, 653-
658; b) A. Parra, S. Reboredo, Chem. Eur. J. 2013, 19, 17244-17260; c)
A. M. Harned, Tetrahedron Lett. 2014, 55, 4681-4689; d) F. Berthiol,
Synthesis, 2015, 47, 587-603; selected examples: e) T. Dohi, A.
Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji, H. Fujioka, S. B.
Caemmerer, Y. Kita, Angew. Chem. Int. Ed. 2008, 47, 3787-3790; f) S.
Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-Beaudenon,
T. Buffeteau, D. Cavagnat, A. Chénedé, Angew. Chem. Int. Ed. 2009, 48,
4605-4609; g) M. Uyanik, T. Yasui, K. Ishihara, Angew. Chem. Int. Ed.
2010, 49, 2175-2177; h) T. Dohi, N. Takenaga, T. Nakae, Y. Toyoda, M.
Yamasaki, M. Shiro, H. Fujioka, A. Maruyama, Y. Kita, J. Am. Chem. Soc.
2013, 135, 4558-4566; i) M. Uyanik, T. Yasui, K. Ishihara, Angew. Chem.,
2013, 125, 9385-9388; j) K. A. Volp, A. M. Harned, Chem. Commun.
2013, 49, 3001-3003; k) M. Uyanik, N. Sasakura, M. Mizuno, K. Ishihara,
ACS Catal. 2017, 7, 872-876; l) T. Dohi, H. Sasa, K. Miyazaki, M. Fujitake,
N. Takenaga, Y. Kita, J. Org. Chem. 2017, 82, 11954-11960; m) M.
Ogasawara, H. Sasa, H. Hu, Y. Amano, H. Nakajima, N. Takenaga, K.
Nakajima, Y. Kita, T. Takahashi, T. Dohi, Org. Lett. 2017, 19, 4102-4105;
n) N. Jain, S. Xu, M. A. Ciufolini, Chem. Eur. J. 2017, 23, 4542-4546; o)
T. Hashimoto, Y. Shimazaki, Y. Omatsu, K. Maruoka, Angew. Chem. Int.
Ed. 2018, 57, 7200-7204; p) Q. Ding, H. He, Q. Cai, Org. Lett. 2018, 20,
4554-4557.
Acknowledgements
We acknowledge the financial support from the National Science
Centre Poland (2016/22/E/ST5/00566). We thank the Faculty of
Physics of the University of Warsaw for granting generous access
to NMR spectrometer. Computer time was provided by the
Interdisciplinary Centre for Mathematical and Computational
Modelling of the University of Warsaw (G75-0).
[6]
H. Zheng, Y. Sang, K. N. Houk, X.-S. Xue, J.-P. Cheng, J. Am. Chem.
Soc. 2019, 141, 16046-16056.
Keywords: phenol dearomatization • hypervalent iodine •
mechanistic investigations • radical-chain pathway
[7]
[8]
[9]
A. M. Harned, Org. Biomol. Chem. 2018, 16, 2324-2329.
T. Tang, A. M. Harned, Org. Biomol. Chem. 2018, 16, 8249-8252.
B. Ganji, A. Ariafard, Org. Biomol. Chem. 2019, 17, 3521-3528.
[1]
a) L. Pouységu, D. Deffieux, S. Quideau, Tetrahedron 2010, 66, 2235-
2261; b) S. P. Roche, J. A. Porco Jr., Angew. Chem. Int. Ed. 2011, 50,
4068-4093; c) W. Sun, G. Li, L. Hong, R. Wang, Org. Biomol. Chem.
2016, 14, 2164-2176; d) W.-T. Wu, L. Zhang, S.-L. You, Chem. Soc. Rev.
2016, 45, 1570-1580.
[10] G. Wells, A. Seaton, M. F. G. Stevens, J. Med. Chem. 2000, 43, 1550-
1562.
[11] The involvement of radicals in the mechanism of the iodine(III)-promoted
dearomatization of phenols was proposed before, but this idea has not
been further explored, see: B. D. Gates, P. Dalidowicz, A. Tebben, S.
Wang, J. S. Swenton, J. Org. Chem. 1992, 57, 2135-2143.
[2]
Reviews: a) A. Pelter, R. S. Ward, Tetrahedron 2001, 57, 273-282; b) H.
Liang, M. A. Ciufolini, Tetrahedron 2010, 66, 5884-5892; selected
examples: c) S. Wang, B. D. Gates, J. S. Swenton, J. Org. Chem. 1991,
56, 1979-1981; d) S. Quideau, M. A. Looney, L. Pouységu, Org. Lett.,
1999, 1, 1651-1654; e) L. H. Pettus, R. W. Van De Water, T. R. R. Pettus,
Org. Lett. 2001, 3, 905-908; f) S. Canesi, D. Bouchu, M. A. Ciufolini, Org.
Lett. 2005, 7, 175-177; g) M. A. Marsini, Y. Huang, R. W. Van De Water,
T. R. R. Pettus, Org. Lett. 2007, 9, 3229-3232; h) L. Pouységu, S.
Chassaing, D. Dejugnac, A.-M. Lamidey, K. Miqueu, J.-M. Sotiropoulos,
S. Quideau, Angew. Chem. Int. Ed. 2008, 47, 3552-3555; i) M.-A.
Beaulieu, C. Sabot, N. Achache, K. C. Guérard, S. Canesi, Chem. Eur.
J. 2010, 16, 11224-11228; j) A. N. Flyer, C. Si, A. G. Myers, Nat. Chem.
2010, 2, 886-892; k) J. L. Wood, J. K. Graeber, J. T. Njardarson,
Tetrahedron 2003, 59, 8855-8858; l) I. R. Baxendale, J. Deeley, C. M.
Griffiths-Jones, S. V. Ley, S. Saaby, G. K. Tranmer, Chem. Commun.
2006, 2566-2568; m) C. Zheng, L. Wang, J. Li, L. Wang, D. Z. Wang,
Org. Lett. 2013, 15, 4046-4049.
[12] G. Litwinienko, K. U. Ingold, Acc. Chem. Res. 2007, 40, 222-230.
[13] a) L. R. Mahoney, Angew. Chem. Int. Ed. 1969, 8, 547-555; b) G. W.
Burton, K. U. Ingold, Acc. Chem. Res. 1986, 19, 194-201; c) Methods in
Enzymology, Vol. 186 (Eds. L. Packer, A. N. Glazer), Academic Press,
1990; d) M. C. Foti, J. Pharm. Pharmacol. 2007, 59, 1673-1685; e) P.
Gijsman in Handbook of Environmental Degradation of Materials (Ed. M.
Kutz), William Andrew Publishing, Oxford, 2012, pp 673-714.
[14] a) J. Stubbe, W. A. van der Donk, Chem. Rev. 1998, 98, 705-762; b) S.
Yamamura in PATAI'S Chemistry of Functional Groups (Ed. Z.
Rappoport), John Wiley & Sons, Ltd., 2009; c) T. R. Blum, Y. Zhu, S. A.
Nordeen, T. P. Yoon, Angew. Chem. Int. Ed. 2014, 53, 11056-11059; d)
M. N. Hopkinson, A. Gómez-Suárez, M. Teders, B. Sahoo, F. Glorius,
Angew. Chem. Int. Ed. 2016, 55, 4361-4366.
[15] a) H. Togo, M. Katohgi, Synlett 2001, 565-0581; b) L. Wang, J. Liu, Eur.
J. Org. Chem. 2016, 1813-1824; c) R. Budhwan, S. Yadav, S. Murarka,
Org. Biomol. Chem. 2019, 17, 6326-6341; d) X. Wang, A. Studer, Acc.
Chem. Res. 2017, 50, 1712-1724.
[3]
a) A. W. G. Burgett, Q. Li, Q. Wei, P. G. Harran, Angew. Chem. Int. Ed.
2003, 42, 4961-4966; b) P. Wipf, S. R. Spencer, J. Am. Chem. Soc. 2005,
127, 225-235; c) S. P. Cook, A. Polara, S. J. Danishefsky, J. Am. Chem.
8
This article is protected by copyright. All rights reserved.