Page 7 of 8
Journal of the American Chemical Society
Brønsted Acid and Pd–PHOX Dual-Catalysed Enantioselective
Shimizu, R.; Tsuchimoto, T.; Sodeoka, M. Catalytic Asymmetric
α-Chlorination of 3-Acyloxazolidin-2-one with a Trinary Catalytic
System. Eur. J. Org. Chem. 2011, 3675. (e) Wang, G.; Xin, X.; Wang,
Z.; Lu, G.; Ma, Y.; Liu, L. Catalytic Enantioselective Oxidative Cou-
pling of Saturated Ethers with Carboxylic Acid Derivatives. Nat.
Commun. 2019, 10, 559. (f) Liu, X.; Sun, S.; Wang, G.; Bai, Z.; Pang,
J.; Liu, L. Catalytic Enantioselective Alkylation of 2-Alkoxy-tetra-
hydrofurans. Org. Chem. Front. 2020, 7, 2202.
(14) (a) Barton, D. H. R.; Elliott, J. D.; Géro, S. D. Synthesis and
Properties of a Series of Sterically Hindered Guanidine Bases. J.
Chem. Soc., Perkin Trans. 1982, 1, 2085. (b) Yin, L.; Brewitz, L.;
Kumagai, N.; Shibasaki, M. Catalytic Generation of α-CF3 Enolate:
Direct Catalytic Asymmetric Mannich-Type Reaction of α-CF3
Amide. J. Am. Chem. Soc. 2014, 136, 17958. (c) Sun, B.; Balaji, P. V.;
Kumagai, N.; Shibasaki, M. α-Halo Amides as Competent Latent
Enolates: Direct Catalytic Asymmetric Mannich-Type Reaction. J.
Am. Chem. Soc. 2017, 139, 8295.
Addition of Activated C-Pronucleophiles to Internal Dienes.
Chem. Sci. 2019, 10, 5176. (c) Adamson, N. J.; Park, S.; Zhou, P.;
Nguyen, A. L.; Malcolmson, S. J. Enantioselective Construction of
Quaternary Stereogenic Centers by the Addition of an Acyl Anion
Equivalent to 1,3-Dienes. Org. Lett. 2020, 22, 2032.
(6) (a) Cheng, L.; Li, M.-M.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L.
Nickel(0)-Catalyzed Hydroalkylation of 1,3-Dienes with Simple
Ketones. J. Am. Chem. Soc. 2018, 140, 11627. Dong and Xing also
reported the racemic version of a Ni-catalyzed hydroalkylation of
1,3-butadiene with simple ketones: (b) Chen, T.; Yang, H.; Yang,
Y.; Dong, G.; Xing, D. Water-Accelerated Nickel-Catalyzed α-Cro-
tylation of Simple Ketones with 1,3-Butadiene under pH and Re-
dox-Neutral Conditions. ACS Catal. 2020, 10, 4328.
(7) Zhang, Q.; Yu, H.; Shen, L.; Tang, T.; Dong, D.; Chai, W.; Zi,
W. Stereodivergent Coupling of 1,3-Dienes with Aldimine Esters
Enabled by Synergistic Pd and Cu Catalysis. J. Am. Chem. Soc.
2019, 141, 14554.
(8) (a) Goldfogel, M. J.; Meek, S. J. Diastereoselective Synthesis
of Vicinal Tertiary and N-Substituted Quaternary Stereogenic
Centers by Catalytic Hydroalkylation of Dienes. Chem. Sci. 2016,
7, 4079.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) Substrates (R)-2p and (S)-2p bearing chiral amides derived
from (R)-methylbenzylamine and (S)-methylbenzylamine were
also tested. They did not lead to improved selectivity ((R)-5ap and
(S)-5ap, 65-66% yields, dr 1.2:1, > 19:1 E/Z, rr >25:1). See Supporting
Information for details.
(9) Zhang, Z.; Xiao, F.; Wu, H.-M.; Dong, X.-Q.; Wang, C.-J. Pd-
Catalyzed Asymmetric Hydroalkylation of 1,3-Dienes: Access to
Unnatural α-Amino Acid Derivatives Containing Vicinal Quater-
nary and Tertiary Stereogenic Centers. Org. Lett. 2020, 22, 569.
(10) For a review on unstabilized enolates, see: Kazmaier, U.
Non-Stabilized Enolates – Versatile Nucleophiles in Transition
Metal-Catalysed Allylic Alkylations. Org. Chem. Front. 2016, 3,
1541. For relevant examples using unstabilized nucleophiles, see:
(b) Norsikian, S.; Baudry, M.; Normant, J.-F. Regio- and enanti-
oselective carbolithiation of non-activated C-C bonds. Tetrahe-
dron Lett. 2000, 41, 6575. (c) Trost, B. M.; Thaisrivongs, D. A. Strat-
egy for Employing Unstabilized Nucleophiles in Palladium-Cata-
lyzed Asymmetric Allylic Alkylations. J. Am. Chem. Soc. 2008, 130,
14092. (d) Zhang, J.; Stanciu, C.; Wang, B.; Hussain, M. M.; Da, C.-
S.; Carroll, P. J.; Dreher, S. D.; Walsh, P. J. Palladium-Catalyzed
Allylic Substitution with (η6–Arene−CH2Z)Cr(CO)3- Based Nucle-
ophiles. J. Am. Chem. Soc. 2011, 133, 20552. (e) You, H.; Rideau, E.;
Sidera, M.; Fletcher, S. P. Non-Stabilized Nucleophiles in Cu-Cat-
alysed Dynamic Kinetic Asymmetric Allylic Alkylation. Nature,
2015, 517, 351. (f) Liu, X.-J.; You, S.-L. Enantioselective Iridium-Cat-
alyzed Allylic Substitution with 2-Methylpyridines. Angew.
Chem., Int. Ed. 2017, 56, 4002.
(11) Tran, G.; Shao, W.; Mazet, C. Ni-Catalyzed Enantioselective
Intermolecular Hydroamination of Branched 1,3-Dienes Using
Primary Aliphatic Amines. J. Am. Chem. Soc. 2019, 141, 14814.
(12) (a) Bordwell, F. G.; Fried, H. E. Acidities of the H-C Protons
in Carboxylic Esters, Amides, and Nitriles. J. Org. Chem. 1981, 46,
4327. (b) Bordwell, F. G. Equilibrium Acidities in Dimethyl Sulfox-
ide Solution. Acc. Chem. Res. 1988, 21, 456.
(13) Selected examples on N-acyloxazolidinone-type imides in
asymmetric catalysis (‘Evans oxazolidinone’): (a) Evans, D. A.;
Nelson, S. G. Chiral Magnesium Bis(sulfonamide) Complexes as
Catalysts for the Merged Enolization and Enantioselective Ami-
nation of N-Acyloxazolidinones. A Catalytic Approach to the Syn-
thesis of Arylglycines. J. Am. Chem. Soc. 1997, 119, 6452. (b) Ngu-
yen, P. Q.; Schäfer, H. J. Enantioselective Oxidative Coupling of
the Titanium Enolate of 3-Phenylacetyl-2-oxazolidinone. Org.
Lett. 2001, 3, 2993. (c) Suzuki, T.; Hamashima, Y.; Sodeoka, M.
Asymmetric Fluorination of α-Aryl Acetic Acid Derivatives with
the Catalytic System NiCl2–Binap/R3SiOTf/2,6-Lutidine. Angew.
Chem., Int. Ed. 2007, 46, 5435. (d) Hamashima, Y.; Nagi, T.;
(16) The scalability of the model reaction was established on a
4.0 mmol scale reaction in THF [1.0] using only half of the catalyst
loading without substantial decrease of the catalytic perfor-
mances ([Ni(cod)2] = 2.5 mol %, (4R,5S)-L9 = 3.0 mol%). After pu-
rification 6aa was isolated in 70% yield (1.15 g) with the following
selectivity data: rr 4.8:1, 90% ee, dr 6.3:1. See Supporting Infor-
mation for details.
(17) (a) Guissart, C.; Barros, A.; Barata, L. R.; Evano, G. Broadly
Applicable Ytterbium-Catalyzed Esterification, Hydrolysis, and
Amidation of Imides. Org. Lett. 2018, 20, 5098. (b) Stevens, J. M.;
Parra-Rivera, A. C.; Dixon, D. D.; Beutner, G. L.; Delmonte, A. J.;
Frantz, D. E.; Janey, J. M.; Paulson, J.; Talley, M. R. Direct Lewis
Acid Catalyzed Conversion of Enantioenriched N-Acyloxazoli-
dinones to Chiral Esters, Amides, and Acids. J. Org. Chem. 2018,
83, 14245.
(18) (a) Chavda, S.; Coulbeck, E.; Coumbarides, G. S.; Dingjan,
M.; Eames, J.; Ghilagaber, S.; Yohannes, Y. Investigations into The
Parallel Kinetic Resolution of 2-Phenylpropanoyl Chloride Using
Quasi-Enantiomeric Oxazolidinones. Tetrahedron: Asymmetry
2006, 17, 3386. (b) Beutner, G. L.; Cohen, B. M.; DelMonte, A. J.;
Dixon, D. D.; Fraunhoffer, K. J.; Glace, A. W.; Lo, E.; Stevens, J. M.;
Vanyo, D.; Wilbert, C. Revisiting the Cleavage of Evans Oxazoli-
dinones with LiOH/H2O2. Org. Process Res. Dev. 2019, 23, 1378. (c)
Shim, E.; Zakarian, A. Stereoselective α-Tertiary Alkylation of N-
(Arylacetyl)oxazolidinones. Synlett 2020, 31, 683.
(19) Preliminary variable time normalization analyses (VTNA)
1
performed by H NMR spectroscopy for the 3,4-hydroalkylation
reaction indicate there is neither catalyst deactivation nor prod-
uct inhibition (‘same excess’ experiments). Moreover a positive
partial order of 1.4 in nickel has been deduced from ‘different ex‐
cess’ experiments. For relevant references, see: (a) Blackmond, D.
A. Reaction Progress Kinetic Analysis: A Powerful Methodology
for Mechanistic Studies of Complex Catalytic Reactions. Angew.
Chem., Int. Ed. 2005, 44, 4302. (b) Burés, J. Variable Time Normal-
ization Analysis: General Graphical Elucidation of Reaction Or-
ders from Concentration Profiles. Angew. Chem., Int. Ed. 2016, 55,
16084. (c) Nielsen, C. D.-T.; Burés, J. Visual Kinetic Analysis.
Chem. Sci. 2019, 10, 348.
ACS Paragon Plus Environment