LETTER
Solid-Phase Synthesis of (w-Aminoalkyl)peptoids
1547
(8) CAUTION: Short chained 1-halo-w-azidoalkanes might be
explosive. We recommend the use of alkanes with at least six
carbon atoms in case diazidoalkanes are formed. For a
discussion, see ref. 9
(9) For a review concerning azide chemistry, see: Bräse, S.; Gil,
C.; Knepper, K.; Zimmermann, V. Angew. Chem. Int. Ed.
2005, 44, 5188; Angew. Chem. 2005, 117, 5320.
(10) (a) Jang, H.; Fafarman, A.; Holub, J. M.; Kirshenbaum, K.
Org. Lett. 2005, 7, 1951. (b) Holub, J. M.; Jang, H.;
Kirshenbaum, K. Org. Biomol. Chem. 2006, 4, 1497.
(c) Shin, S. B. Y.; Yoo, B.; Todaro, L. J.; Kirshenbaum, K.
J. Am. Chem. Soc. 2007, 129, 3218. (d) Holub, J. M.; Jang,
H.; Kirshenbaum, K. Org. Lett. 2007, 9, 3275. (e) Holub, J.
M.; Garabedian, M. J.; Kirshenbaum, K. QSAR Comb. Sci.
2007, 26, 1175. (f) Shah, N. H.; Kirshenbaum, K.
Introducing w-aminoalkyl chains into peptoids through
the reduction of the w-azidoalkyl species opens new pos-
sibilities for inserting protected amines. This method is
orthogonal to the frequently used Boc- and Nosyl-protect-
ing groups. Besides the useful Click reaction, this method
can also be an effective tool for creating new bioconju-
gates, with more than one active element bound through a
peptide bond in cell-penetrating transporter systems.
Compared to the Boc-, Fmoc- and Nosyl-protected
amines so far predominantly used,1–7 this method is
cheaper and, in various cases such as with the chiral pep-
toids 5{b,c}n, also leads to the desired product in fewer
reaction steps with better overall yields.
Macromol. Rapid Commun. 2008, 29, 1134.
In summary, azidopeptoids with hydrophilic side chains
can be readily reduced under standard Staudinger condi-
tions, while reduction of more hydrophobic peptoids only
generates high yields when using the Bartra reagent for
the reduction of the azido moiety. A new class of chiral
and amino-PEG-type peptoids has been synthesized
through an efficient, combined microwave-assisted sub-
monomer synthesis, starting from 1-amino-w-azido-
alkanes and using the aforementioned reduction condi-
tions on solid supports. Structural and biological studies
of these new chiral and achiral molecular transporters will
remain our focus in the near future.
(11) (a) Lim, H.-S.; Archer, C. T.; Kim, Y.-C.; Hutchens, T.;
Kodadek, T. Chem. Commun. 2008, 1064. (b) See also:
Disney, M. D. PCT Int. Appl. WO 20081034898, 2008.
(12) Lee, J. W.; Jun, S. I.; Kim, K. Tetrahedron Lett. 2001, 42,
2709.
(13) Analytical data for selected products: (S)-1-[3-(5-Azido-
pentyl)phenyl]ethylamine (3b): 1H NMR (400 MHz,
CDCl3): d = 1.41 (tt, J = 7.2, 7.2 Hz, 2 H, N3CH2CH2CH2),
1.44 (d, J = 6.4 Hz, 3 H, CHCH3), 1.62 (tt, J = 7.6, 7.2 Hz,
2 H, CH2CH2-Ar), 1.63 (tt, J = 7.2, 7.2 Hz, 2 H, CH2CH2N3),
2.60 (t, J = 7.6 Hz, 2 H, CH2-Ar), 3.25 (t, J = 7.2 Hz, 2 H,
N3CH2), 4.12 (q, J = 6.4 Hz, 2 H, CHCH3), 4.52 (br s, 2 H,
NH2), 7.08 (d, J = 7.2 Hz, 1 H, Ar6-H), 7.14 (s, 1 H, Ar2-H),
7.15 (d, J = 7.2 Hz, 1 H, Ar4-H), 7.24 (dd, J = 7.2, 7.2 Hz,
1 H, Ar5-H) ppm. 13C NMR (100 MHz, CDCl3): d = 23.4
(CHCH3), 26.4 (N3CH2CH2CH2), 28.7 (N3CH2CH2), 30.9
(CH2CH2-Ar), 35.7 (CH2-Ar), 51.3 (N3CH2), 51.4 (CH),
123.5 (C6-Ar-H), 126.2 (C4-Ar-H), 127.8 (C2-Ar-H), 128.7
(C5-Ar-H), 142.9 [Cq-Ar(CH2)], 143.5 [Cq-Ar(CH)] ppm.
FTIR (film on KBr): 2936, 2860, 2097, 1678, 1542, 1490,
1452, 1385, 1256, 1203, 1136, 897, 835, 799, 721, 706, 558,
461 cm–1; MS (FAB, matrix: mNBA): m/z (%) = 233(100)
[M + H]+, 205(6) [M – N2]+; HRMS: m/z calcd: 233.1766;
found: 233.1769. (S)-1-[3-(5-Azidopent-1-enyl)phenyl]-
ethylamine (3c): 1H NMR (400 MHz, CDCl3): d = 1.38 (d,
J = 6.8 Hz, 3 H, NCHCH3), 1.87 (tt, J = 6.8, 6.8 Hz, 2 H,
CH2CH2CH2), 2.44 (t, J = 6.8 Hz, 2 H, CH2C≡C), 3.91 (t,
J = 6.8 Hz, 2 H, N3CH2), 4.04 (q, J = 6.8 Hz, 1 H, CHCH3),
5.62 (br s, 2 H, NH2), 7.18 (dd, J = 4.0, 3.6 Hz, 1 H, Ar5-H),
7.18 (d, J = 4.0 Hz, 1 H, Ar6-H), 7.20–7.28 (m, 1 H, Ar4-H),
7.31 (s, 1 H, Ar2-H) ppm. 13C NMR (100 MHz, CDCl3): d =
16.7 (CH2C≡C), 21.9 (CHCH3), 27.8 (N3CH2), 50.2
(CH2CH2CH2), 51.2 (CH), 81.1 (C≡C-Ar), 88.8 (C≡C-Ar),
124.2 [Cq-Ar(C≡C)], 125.8 (C6-Ar-H), 128.9 (C5-Ar-H),
129.5 (C4-Ar-H), 131.4 (C2-Ar-H), 141.3 [Cq-Ar(CH)] ppm.
FTIR (film on KBr): 2932 (m), 2099, 1678, 1602, 1483,
1430, 1367, 1293, 1256, 1202, 1134, 897, 834, 798, 721,
700, 476; MS (FAB, matrix: mNBA): m/z (%) = 229(50)[M
+ H]+, 212(100) [M – NH2]+; HRMS: m/z calcd: 229.1453;
found: 229.1449. 2-[2-(2-Azidoethoxy)ethoxy]ethylamine
(3d): Analytical data are consistent with those reported by:
Klein, E.; DeBonis, S.; Thiede, B.; Skoufias, D. A.;
Kozielski, F.; Lebeau, L. Bioorg. Med. Chem. 2007, 6474.
(14) The final products were isolated as ammonium
trifluoroacetate salts.
Acknowledgment
We acknowledge the financial support of the Evangelisches
Studienwerk e.V. Villigst and the DFG-Centre for functionalized
nanostructures (CFN, project E1.1). The chiral phenylethylamines
were gifts from BASF (Prof. Dr. Ditrich, ChiPros). We greatly ap-
preciate the dedicated help received from Karolin Niessner and
Dr. Michael Gartner.
References and Notes
(1) Simon, R. J.; Kania, R. S.; Zuckermann, R. N.; Huebner, V.
D.; Jewell, D. A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg,
S.; Marlowe, C. K. Proc. Natl. Acad. Sci. U.S.A. 1992, 89,
9367.
(2) Zuckermann, R.; Dubois-Stringfellow, N.; Dwarki, V.;
Innis, M. A.; Murphy, J. E.; Cohen, F.; Tetsuo, U. (Chiron
Corporation, USA) PCT Int. Appl. WO 9806437, 1998.
(3) (a) Peretto, I.; Sanchez-Martin, R. M.; Wang, X.-h.; Ellard,
J.; Mittoo, S.; Bradley, M. Chem. Commun. 2003, 2312.
(b) Diaz-Mochon, J. J.; Fara, M. A.; Sanchez-Martin, R. M.;
Bradley, M. Tetrahedron Lett. 2008, 49, 923. (c) Fara, M.
A.; Diaz-Mochon, J. J.; Bradley, M. Tetrahedron Lett. 2006,
47, 1011.
(4) (a) Schröder, T.; Niemeier, N.; Afonin, S.; Ulrich, A. S.;
Krug, H. F.; Bräse, S. J. Med. Chem. 2008, 51, 376.
(b) Schröder, T.; Schmitz, K.; Niemeier, N.; Balaban, T. S.;
Krug, H. F.; Schepers, U.; Bräse, S. Bioconjugate Chem.
2007, 18, 342.
(5) Tan, N. C.; Yu, P.; Kwon, Y.-U.; Kodadek, T. Bioorg. Med.
Chem. 2008, 16, 5853.
(15) For a different approach, see: (a) Natarajan, A.; Du, W.;
Xiong, C.-Y.; DeNardo, G. L.; DeNardo, S. J.; Gervay-
Hague, J. Chem. Commun. 2007, 695. (b) Feau, C.; Klein,
E.; Kerth, P.; Lebeau, L. Bioorg. Med. Chem. Lett. 2007, 17,
1499.
(6) For a different approach, see: Hahn, F.; Schmitz, K.;
Balaban, T. S.; Bräse, S.; Schepers, U. ChemMedChem
2008, 3, 1185.
(7) Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H.
J. Am. Chem. Soc. 1992, 114, 10646.
Synlett 2010, No. 10, 1544–1548 © Thieme Stuttgart · New York