C O M M U N I C A T I O N S
(10) For a recent discussion, see: Trost, B. M.; Ball, Z. T. Synthesis 2005, 853–
887.
in good to excellent yield with a high degree of geometrical
selectivity for a range of substrates. The substrates are readily
accessible via alkyne-based nucleophilic additions into acylsilanes,
this method representing a straightforward option for convergent
fragment coupling. The PtCl2-catalyzed hydrosilylations of the
corresponding ynones, also accessible via alkyne-based nucleophilic
additions, provide complementary geometry in these enone prod-
ucts.20 Finally, we have demonstrated the synthetic utility of the
observed silylenones, validating that the vinylsilane provides a
functionality for further manipulations. The formation of geo-
metrically pure trisubstituted olefins remains a challenge in synthetic
chemistry; the methods herein provide operationally simple pro-
tocols for accessing these structural motifs. Further explorations
of these unique transformations and applications will be reported
in due course.
(11) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16–21.
(12) Most hydrosilylation studies of internal alkynes have achieved regioselec-
tivities primarily through either steric discrimination or intramolecular
delivery of tethered silanes. For catalytic regioselective hydrosilylations
of internal alkynes apparently reliant on electronic differentiation, see: (a)
Hamze, A.; Provot, O.; Alami, M.; Brion, J.-D. Org. Lett. 2005, 7, 5625–
5628. (b) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2005, 127, 17644–
17655. (c) Konno, T.; Taku, K.-i.; Yamada, S.; Moriyasu, K.; Ishihara, T.
Org. Biomol. Chem. 2009, 7, 1167–1170. (d) Tius has described a rhodium-
catalyzed hydrosilylation of ynals to provide similar R-selectivity to our
system, but steric differentiation was also highly influential. See: Tius,
M. A.; Pal, S. K. Tetrahedron Lett. 2001, 42, 2605–2608.
(13) Although geometrical considerations are not applicable, it should be noted
that substrates based on terminal alkynes were effective in the silyl migration
process but provided complex mixtures in the hydrosilylation process. See
Supporting Information for details.
(14) For a review of the use of R-substituted enones in cross-coupling reactions,
see: Negishi, E.-i. J. Organomet. Chem. 1999, 576, 179–194.
(15) For select reviews, see: (a) Denmark, S. E.; Liu, J. H.-C. Angew. Chem.,
Int. Ed. 2010, 49, 2978–2986. (b) Denmark, S. E.; Sweis, R. F. In Metal
Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A., Diederich,
F., Eds.; Wiley-VCH: Weinheim, 2004; Chapter 4. (c) Hiyama, T. In Metal
Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.;
Wiley-VCH: Weinheim, 1998; Chapter 10 and references therein.
(16) (a) Denmark, S. E.; Choi, J. Y. J. Am. Chem. Soc. 1999, 121, 5821–5822.
(b) Itami, K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei, T.; Yoshida,
J.-i. J. Am. Chem. Soc. 2001, 123, 11577–11585. (c) Hosoi, K.; Nozaki,
K.; Hiyama, T. Chem. Lett. 2002, 31, 138–139. (d) Nakao, Y.; Oda, T.;
Sahoo, A. K.; Hiyama, T. J. Organomet. Chem. 2003, 687, 570–573. (e)
Trost, B. M.; Machacek, M. R.; Ball, Z. T. Org. Lett. 2003, 5, 1895–1898.
(f) Anderson, J. C.; Munday, R. H. J. Org. Chem. 2004, 69, 8971–8974.
(g) Nakao, Y.; Imanaka, H.; Sahoo, A. K.; Yada, A.; Hiyama, T. J. Am.
Chem. Soc. 2005, 127, 6952–6953.
Acknowledgment. Colorado State University is acknowledged
for support. We also thank Professors Kennan, Rovis, Shi, Williams,
Wood, and their respective research groups for both sharing supplies
and helpful discussions.
Supporting Information Available: Experimental procedures,
compound characterization data, and spectra. This material is available
(17) The silylenone products were not effective Hiyama coupling partners, likely
due to the complicating electrophilicity of the enone under the fluoride-
based conditions.
(18) Water additive was crucial to the success of these transformations, most
likely facilitating the formation of a disiloxane intermediate which upon
fluoride activation is the active transmetallation species. For a relevant
discussion, see: Denmark, S. E.; Sweis, R. F.; Wehrli, D. J. Am. Chem.
Soc. 2004, 126, 4865–4875.
(19) R-Silylenones can also be converted to R-iodoenones by treatment with
ICl; see: Alimardanov, A.; Negishi, E.-i. Tetrahedron Lett. 1999, 40, 3839–
3842. (b) This process is generally stereoconvergent, however, as illustrated
in the transformations of both 3 and 10 to 11. In contrast, the use of Hiyama
couplings enables efficient access to both isomers of the trisubstituted
alkenes.
References
(1) For select reviews on Pt and Au catalysis in alkyne activation, see: (a)
Zhang, L.; Sun, J.; Kozmin, S. A. AdV. Synth. Catal. 2006, 348, 2271–
2296. (b) Fu¨rstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46,
3410–3449. (c) Hashmi, A. S. K. Chem. ReV. 2007, 107, 3180–3211. (d)
Li, Z.; Brouwer, C.; He, C. Chem. ReV. 2008, 108, 3239–3265. (e) Arcadi,
A. Chem. ReV. 2008, 108, 3266–3325. (f) Jime´nez-Nu´n˜ez, E.; Echavarren,
A. M. Chem. ReV. 2008, 108, 3326–3350. (g) Gorin, D. J.; Sherry, B. D.;
Toste, F. D. Chem. ReV. 2008, 108, 3351–3378. (h) Patil, N. T.; Yamamoto,
Y. Chem. ReV. 2008, 108, 3395–3442. (i) Shen, H. C. Tetrahedron 2008,
64, 3885–3903. (j) Fu¨rstner, A. Chem. Soc. ReV. 2009, 38, 3208–3221.
(2) See Supporting Information for details.
(3) The isomeric ratio was higher at elevated temperatures. This observation
is consistent with the initial silyl migration having a high activation energy
relative to a background olefin isomerization process mediated by PtCl2.
Olefin isomerization occurred to some extent when the enone products were
resubjected to the reaction conditions.
(4) Mergardt, B.; Weber, K.; Adiwidjaja, G.; Schaumann, E. Angew. Chem.,
Int. Ed. Engl. 1991, 30, 1687–1688.
(5) Ohfune described a singular case of a BF3•Et2O-catalyzed silicon migration,
but in modest yield and low stereoselectivity. See: Sakaguchi, K.; Higashino,
M.; Ohfune, Y. Tetrahedron 2003, 59, 6647–6658.
(6) Ma, D.; Lu, X. J. Chem. Soc., Chem. Commun. 1989, 890–891.
(7) (a) Trost, B. M.; Livingston, R. C. J. Am. Chem. Soc. 1995, 117, 9586–
9587. (b) Trost, B. M.; Livingston, R. C. J. Am. Chem. Soc. 2008, 130,
11970–11978.
(20) For a related example of accessing alkenes with geometrical complemen-
tarity via alkyne activation processes, see: Barluenga, J.; Riesgo, L.; Vicente,
R.; Lo´pez, L. A.; Toma´s, M. J. Am. Chem. Soc. 2007, 129, 7772–7773.
(8) In general, isomerization to thermodynamic equilibrium led to an ap-
proximately 2:1 mixture of E and Z enone isomers.
(9) Hiyama, T.; Kusumoto, T. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 8, Chapter 3.12.
JA1058197
9
11928 J. AM. CHEM. SOC. VOL. 132, NO. 34, 2010