Spectrometry Center and Ms. Brooke A. Anderson (Univ. of
Idaho) for mass spectrometric analyses.
Notes and references
z The identity of the reported compounds was fully ascertained
by NMR (1H, 13C, 31P, COSY, HSQC and/or DEPT) and
MALDI-HRMS, while purity was determined by 1D NMR.
y Single stranded probes and duplexes with mismatched targets generally
result in red-shifting of fluorescence emission peaks by up to 5 nm.
z Relative fluorescence emission quantum yield of ON10:DNA = 0.16.
1 S. Kim and A. Misra, Annu. Rev. Biomed. Eng., 2007, 9, 289–320.
2 (a) A. Okamoto, Y. Saito and I. Saito, J. Photochem. Photobiol., C,
2005, 6, 108–122; (b) D. W. Dodd and R. H. E. Hudson, Mini–Rev.
Org. Chem., 2009, 6, 378–391.
3 (a) A. Okamoto, K. Kanatani and I. Saito, J. Am. Chem. Soc.,
2004, 126, 4820–4827; (b) G. T. Hwang, Y. J. Seo, S. J. Kim and
B. H. Kim, Tetrahedron Lett., 2004, 45, 3543–3546; (c) R. H.
E. Hudson and A. Ghorbani-Choghamarani, Org. Biomol. Chem.,
2007, 5, 1845–1848; (d) Y. Saito, K. Motegi, S. S. Bag and I. Saito,
Bioorg. Med. Chem., 2008, 16, 107–113; (e) S. S. Bag, R. Kundu,
K. Matsumoto, Y. Saito and I. Saito, Bioorg. Med. Chem. Lett.,
2010, 9, 3227–3230.
4 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004–2021.
5 (a) F. Amblard, J. H. Cho and R. F. Schinazi, Chem. Rev., 2009,
109, 4207–4220; (b) A. H. El-Sagheer and T. Brown, Chem. Soc.
Rev., 2010, 39, 1388–1405.
6 P. Kocalka, N. K. Andersen, F. Jensen and P. Nielsen,
ChemBioChem, 2007, 8, 2106–2116.
Fig. 2 Fluorescence intensity of single stranded probes (SSPs) and
corresponding duplexes with complementary DNA or mismatched
DNA targets. Intensity observed at lem = 382 nm for ON5–ON8 and
lem = 377 nm for ON9–ON12 at T = 5 1C. Note that different y-axis
scales are used.
7 (a) R. Varghese and H. A. Wagenknecht, Chem. Commun., 2009,
2615–2624; (b) V. L. Malinovskii, D. Wenger and R. Haner, Chem.
Soc. Rev., 2010, 39, 410–422; (c) T. Umemoto, P. J. Hrdlicka,
B. R. Babu and J. Wengel, ChemBioChem, 2007, 8, 2240–2248.
8 (a) M. E. Østergaard, P. Kumar, B. Baral, D. J. Raible,
T. S. Kumar, B. A. Anderson, D. C. Guenther, L. Deobald,
A. J. Paszczynski, P. K. Sharma and P. J. Hrdlicka,
ChemBioChem, 2009, 10, 2740–2743; (b) S. P. Sau, P. Kumar,
B. A. Anderson, M. E. Østergaard, L. Deobald, A. Paszczynski,
P. K. Sharma and P. J. Hrdlicka, Chem. Commun., 2009,
6756–6758.
9 (a) P. J. Hrdlicka, B. R. Babu, M. D. Sørensen, N. Harrit and
J. Wengel, J. Am. Chem. Soc., 2005, 127, 13293–13299;
(b) T. S. Kumar, J. Wengel and P. J. Hrdlicka, ChemBioChem,
2007, 8, 1122–1125; (c) T. S. Kumar, A. S. Madsen,
M. E. Østergaard, J. Wengel and P. J. Hrdlicka, J. Org. Chem.,
2008, 73, 7060–7066; (d) T. S. Kumar, A. S. Madsen,
M. E. Østergaard, S. P. Sau, J. Wengel and P. J. Hrdlicka,
J. Org. Chem., 2009, 74, 1070–1081; (e) S. P. Sau, T. S. Kumar
and P. J. Hrdlicka, Org. Biomol. Chem., 2010, 8, 2028–2036.
10 D. J. Hurley and Y. Tor, J. Am. Chem. Soc., 1998, 120, 2194–2195.
11 A. K. Schrock and G. B. Schuster, J. Am. Chem. Soc., 1984, 106,
5234–5240.
prone to intercalate upon hybridization to mismatched targets
than that of monomer X. The different binding modes are
related to the subtle change in linker chemistry between Y and
X monomers, but are not fully understood at the molecular
level. Diagnostic assays employing monomer Y will—unlike
assays employing monomer X—require precise temperature
control to minimize undesired duplex formation with non-targets
and concomitant false positives.
Finally, given the importance of probes for detection of
RNA targets to elucidate biological roles of RNA in living
organisms,18 we recorded thermal denaturation curves and
fluorescence emission spectra of the representative probes
ON6 and ON10 and their duplexes with complementary or
singly mismatched RNA targets (Table S3, Fig. S9 and S10,
ESIw). Similar trends were observed for ON6 (monomer X;
efficient SNP discrimination) and ON10 (monomer Y;
pronounced hybridization-induced increases, discrimination of
Y:G mismatches) as when targeting the corresponding DNA
strands, which emphasizes the generality of these probes.
To sum up, two fluorescent nucleotide monomers have been
prepared in five steps from commercially available 5-iodo-20-
deoxyuridine. ONs modified with monomer X allow efficient
fluorescent discrimination of SNPs via a G-specific quenching
mechanism, while ONs modified with monomer Y display
remarkable hybridization-induced increases in emission and
discrimination of Y:G-mismatches. Evaluation of these building
blocks in diagnostic assays is ongoing.
12 S. Y. Park, J. H. Yoon, C. S. Hong, R. Souane, J. S. Kim,
S. E. Matthews and J. Vicens, J. Org. Chem., 2008, 73, 8212–8218.
13 (a) T. Kottysch, C. Ahlborn, F. Brotzel and C. Richert, Chem.–
Eur. J., 2004, 10, 4017–4028; (b) M. V. Skorobogatyi,
A. D. Malakhov, A. A. Pchelintseva, A. A. Turban,
S. L. Bondarev and V. A. Korshun, ChemBioChem, 2006, 7,
810–816.
14 A. Okamoto, K. Tainaka, Y. Ochi, K. Kanatani and I. Saito, Mol.
Biosyst., 2006, 2, 122–126.
15 Monomers with intercalating units often decrease mismatch
specificity: ref. 9d and (a) V. A. Korshun, D. A. Stetsenko and
M. J. Gait, J. Chem. Soc., Perkin Trans. 1, 2002, 1092–1104;
(b) C. Dohno and I. Saito, ChemBioChem, 2005, 6, 1075–1081.
16 C. A. M. Seidel, A. Schulz and M. H. M. Sauer, J. Phys. Chem.,
1996, 100, 5541–5553.
17 (a) K. Yamana, H. Zako, K. Asazuma, R. Iwase, H. Nakano and
A. Murakami, Angew. Chem., Int. Ed., 2001, 40, 1104–1106;
(b) D. Honcharenko, C. Zhou and J. Chattopadhyaya, J. Org.
Chem., 2008, 73, 2829–2842.
We appreciate financial support from Idaho NSF EPSCoR,
the BANTech Center at Univ. of Idaho, a University of Idaho
Research Office and Research Council Seed Grant, and a
scholarship from the College of Graduate Studies, Univ.
of Idaho (M.E.Ø). We thank the EBI Murdock Mass
18 S. Tyagi, Nat. Methods, 2009, 6, 331–338.
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 4929–4931 | 4931