Michel Ferreira et al.
FULL PAPERS
Image analysis: The software ImageJ has been systemati-
cally used for enhancing the contrast and for image analysis
in order to get the particle size distributions from 5 cryo-
TEM micrographs (see Supporting Information).[14]
1995, 128, 275–279; g) T. Bartik, B. E. Hanson, J. Mol.
Catal. A: Chem. 1995, 98, 117–122; h) A. Andriollo, J.
Carrasquel, J. MariÇo, F. A. Lꢆpez, D. E. Pꢇez, I.
Rojas, N. Valencia, J. Mol. Catal. A: Chem. 1997, 116,
157–165; i) H. Ding, J. Kang, B. E. Hanson, C. W.
Kohlpaintner, J. Mol. Catal. A: Chem. 1997, 124, 21–
28; j) R. Chen, X. Liu, Z. Jin, J. Organomet. Chem.
1998, 571, 201–204; k) B. E. Hanson, H. Ding, C. W.
Kohlpaintner, Catal. Today 1998, 42, 421–429; l) J.
Jiang, Y. Wang, C. Liu, F. Han, Z. Jin, J. Mol. Catal. A:
Chem. 1999, 147, 131–136; m) E. Valls, J. Suades, R.
Suades, Organometallics 1999, 18, 5475–5483; n) S. Bis-
choff, M. Kant, Ind. Eng. Chem. Res. 2000, 39, 4908–
4913; o) S. Bischoff, A. Kçckritz, M. Kant, Top. Catal.
2000, 13, 327–334; p) M. S. Goedheijt, B. E. Hanson,
J. N. H. Reek, P. C. J Kamer, P. W. N. M. van Leeuwen,
J. Am. Chem. Soc. 2000, 122, 1650–1657; q) S. Bischoff,
M. Kant, Catal. Today 2001, 66, 183–189; r) L. Caron,
M. Canipelle, S. Tilloy, H. Bricout, E. Monflier, Tetra-
hedron Lett. 2001, 42, 8837–8840; s) X. Ma, X. Fu, J.
Mol. Catal. A: Chem. 2003, 195, 47–53; t) E. Paetzold,
G. Oehme, C. Fischer, M. Frank, J. Mol. Catal. A:
Chem. 2003, 200, 95–103; u) Q. Peng, Y. Yang, C.
Wang, X. Liao, Y. Yuan, Catal. Lett. 2003, 88, 219–225;
v) A. Solsona, J. Suades, R. Mathieu, J. Organomet.
Chem. 2003, 669, 172–181; w) Q. Peng, X. Liao, Y.
Yuan, Catal. Commun. 2004, 5, 447–451; x) M. Karls-
son, A. Ionescu, C. Andersson, J. Mol. Catal. A: Chem.
2006, 259, 231–237; y) S. Tilloy, E. Genin, F. Hapiot, D.
Landy, S. Fourmentin, J. P. GenÞt, V. Michelet, E. Mon-
flier, Adv. Synth. Catal. 2006, 348, 1547–1552; z) H. Fu,
M. Li, J. Chen, R. Zhang, W. Jiang, M. Yuan, H. Chen,
X. Li, J. Mol. Catal. A: Chem. 2008, 292, 21–27.
Catalytic Experiments
PdACHTUNGTRENNUNG(OAc)2 (4.5 mmol, 1 mg) and phosphane (40 mmol) were
introduced under a nitrogen atmosphere into a Schlenk tube
containing water (4 g). After stirring with a magnetic bar for
16 h, the yellow solution was transferred into a mixture of
butyl or allyl undecyl carbonate (450 mmol), diethylamine
(900 mmol), heptane (4 g) and dodecane (200 mmol) as inter-
nal standard. The medium was stirred at 1250 rpm at room
temperature and the reaction was monitored by quantitative
gas chromatographic analysis of the organic layer.
The phosphane concentration was equal to 10 mM but it
was considered that only five equivalents (ꢀ5.5 mM) from
the nine of phosphane (relative to Pd) are available in solu-
tion and can form aggregates. In fact, three equivalents were
used to stabilize the palladium(0) species Pd(phosphane)3
and one equivalent of phosphane was oxidized during reduc-
tion of the PdACHTUNGTRENNUNG(OAc)2 according to the following equation.
Acknowledgements
This work was supported by the Centre National de la Re-
cherche Scientifique (CNRS). M. Ferreira is grateful to the
Ministꢀre de l’Education et de la Recherche for financial sup-
port (2005–2008). The authors are grateful to CAPA (Centre
d’Analyse Protꢁomique de l’Artois) for mass spectrometry
analysis. The mass spectrometry facility used for this study
was funded by the European Community (FEDER), the
Fonds d’Industrialisation du Bassin Minier (FIBM), the Min-
istꢀre de l’Education Nationale, de l’Enseignement Supꢁrieur
et de la Recherche and the Universitꢁ d’Artois. The 500 MHz
NMR facilities were funded by the Rꢁgion Nord-Pas de
Calais (France), the Ministꢀre de la Jeunesse, de l’Education
Nationale et de la Recherche (MJENR) and the Fonds Eu-
ropꢁens de Dꢁveloppement Rꢁgional (FEDER).
[4] M. Ferreira, H. Bricout, F. Hapiot, A. Sayede, S. Tilloy,
E. Monflier, ChemSusChem 2008, 1, 631–636.
[5] M. Ferreira, H. Bricout, A. Sayede, A. Ponchel, S.
Fourmentin, S. Tilloy, E. Monflier, Adv. Synth. Catal.
2008, 350, 609–618.
1
[6] For examples of the use of JP,Se coupling constants to
determine phosphane basicity, see: E. Genin, R. Amen-
gual, V. Michelet, M. Savignac, A. Jutand, L. Neuville,
J. P. GenÞt, Adv. Synth. Catal. 2004, 346, 1733, and ref-
erences cited therein.
[7] K. Bouchemal, F. Agnely, A. Koffi, G. Ponchel, J. Col-
loid Interface Sci. 2009, 338, 169–176.
[8] Y. Cohen, L. Avram, L. Frish, Angew. Chem. 2005, 117,
524–560; Angew. Chem. Int. Ed. 2005, 44, 520–554.
[9] D. G. Regan, B. E. Chapman, P. W. Kuchel Magn.
Reson. Chem. 2002; 40: S115–S121.
[10] J. Harris, M. Adrian, in: Electron Microscopy Methods
and Protocols, Methods in Molecular Biology Series,
Vol. 117, (Ed. M. A. N. Hajibagheri), Humana press,
Totowa, NJ, 1999, pp 31–48.
References
[1] B. Cornils, W. A. Herrmann, in: Aqueous-Phase Organ-
ometallic Catalysis, (Eds.: B. Cornils, W. A. Herrmann),
Wiley-VCH, 2004, pp 3–16.
[11] Supplementary data are available in the Supporting In-
formation. Other cryoTEM images of phosphanes 2
and 4 and TEM images (negative staining) of phos-
phane 2 are presented. Interestingly, the average parti-
cle size of phosphane 2 determined from negative
staining TEM data was equal to 8.8Æ4.8 nm which is
close to the value obtained from cryoTEM data.
[12] a) S. Lemaire-Audoire, M. Savignac, E. Blart, G. Pour-
celot, J. P. GenÞt, J. M. Bernard, Tetrahedron Lett.
[2] K. H. Shaughnessy, Chem. Rev. 2009, 109, 643–710.
[3] a) A. F. Borowski, D. J. Cole-Hamilton, G. Wilkinson,
Nouv. J. Chim. 1978, 2, 137–144; b) B. Fell, G. Papado-
gianakis, J. Mol. Catal. 1991, 66, 143–154; c) T. Bartik,
B. Bartik, B. E. Hanson, J. Mol. Catal. 1994, 88, 43–56;
d) H. Ding, B. E. Hanson, J. Chem. Soc. Chem.
Commun. 1994, 2747–2748; e) H. Ding, B. E. Hanson,
T. Bartik, B. Bartik, Organometallics 1994, 13, 3761–
3763; f) F. Bitterer, S. Kucken, O. Stelzer, Chem. Ber.
1202
ꢂ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2010, 352, 1193 – 1203