Organic Letters
ORCID
Letter
Oxidative N-Dealkylation/Carbonylation of Tertiary Amines with
Alkynes to α,β-Alkynylamides. J. Org. Chem. 2016, 81, 4974−4980.
(f) Hughes, N. L.; Brown, C. L.; Irwin, A. A.; Cao, Q.; Muldoon, M. J.
Palladium(II)-Catalysed Aminocarbonylation of Terminal Alkynes for
the Synthesis of 2-Ynamides: Addressing the Challenges of Solvents
and Gas Mixtures. ChemSusChem 2017, 10, 675−680.
Notes
The authors declare no competing financial interest.
(6) (a) Gabriele, B.; Costa, M.; Salerno, G.; Chiusoli, G. P. An
efficient and selective palladium-catalysed oxidative dicarbonylation of
alkynes to alkyl- or aryl-maleic esters. J. Chem. Soc., Perkin Trans. 1
1994, 83−87. (b) Gabriele, B.; Veltri, L.; Salerno, G.; Costa, M.;
Chiusoli, G. P. Synthesis of Maleic Anhydrides and Maleic Acids by
Pd-Catalyzed Oxidative Dicarbonylation of Alk-1-ynes. Eur. J. Org.
Chem. 2003, 2003, 1722−1728. (c) Sakurai, Y.; Sakaguchi, S.; Ishii, Y.
Carbonylation of terminal alkynes using a multicatalytic system,
Pd(II)/chlorohydroquinone/NPMoV, under carbon monoxide and
dioxygen. Tetrahedron Lett. 1999, 40, 1701−1704. (d) Gadge, S. T.;
Bhanage, B. M. Synthesis of α,β-Alkynyl Esters and Unsymmetrical
Maleate Esters Catalyzed by Pd/C; An Efficient Phosphine-Free
Catalytic System for Oxidative Alkoxycarbonylation of Terminal
Alkynes. Synlett 2013, 24, 981−986. (e) Cao, Q.; Hughes, N. L.;
Muldoon, M. J. Synthesis of 2-Alkynoates by Palladium(II)-Catalyzed
Oxidative Carbonylation of Terminal Alkynes and Alcohols. Chem. -
Eur. J. 2016, 22, 11982−11985.
(7) Kennedy, O.; Zhorenes, R. Coumarins: Biology, Applications and
Mode of Action; John Wiley and Sons: Chichester, U.K., 1997.
(8) (a) Kadnikov, D. V.; Larock, R. C. Palladium-Catalyzed
Carbonylative Annulation of Internal Alkynes: Synthesis of 3,4-
Disubstituted Coumarins. J. Org. Chem. 2003, 68, 9423−9432.
(b) Kadnikov, D. V.; Larock, R. C. Synthesis of Coumarins via
Palladium-Catalyzed Carbonylative Annulation of Internal Alkynes by
o-Iodophenols. Org. Lett. 2000, 2, 3643−3646. (c) Park, K. H.; Jung, I.
G.; Chung, Y. K. Synthesis of Coumarins Catalyzed by Hetero-
bimetallic Co/Rh Nanoparticles. Synlett 2004, 2004, 2541−2544.
(d) Rixson, J. E.; Skelton, B. W.; Koutsantonis, G. A.; Gericke, K. M.;
Stewart, S. G. Domino Reactions for the Synthesis of Anthrapyran-2-
ones and the Total Synthesis of the Natural Product ( )-BE-26554A.
Org. Lett. 2013, 15, 4834−4837. (e) Yoneda, E.; Sugioka, T.; Hirao, K.;
Zhang, S.-W.; Takahashi, S. Rhodium-catalysed cyclic carbonylation of
2-alkynylphenols: synthesis of benzofuranones and coumarins. J. Chem.
Soc., Perkin Trans. 1 1998, 1, 477−483. (f) Liu, X.-G.; Zhang, S.-S.;
Jiang, C.-Y.; Wu, J.-Q.; Li, Q.; Wang, H. Cp*Co(III)-Catalyzed
Annulations of 2-Alkenylphenols with CO: Mild Access to Coumarin
Derivatives. Org. Lett. 2015, 17, 5404−5407. (g) Gabriele, B.;
Mancuso, R.; Salerno, G.; Plastina, P. A Novel Palladium-Catalyzed
Dicarbonylation Process Leading to Coumarins. J. Org. Chem. 2008,
73, 756−759. (h) Ferguson, J.; Zeng, F.; Alper, H. Synthesis of
Coumarins via Pd-Catalyzed Oxidative Cyclocarbonylation of 2-
Vinylphenols. Org. Lett. 2012, 14, 5602−5605. (i) Ogawa, A.; Kondo,
K.; Murai, S.; Sonoda, N. Selenium-assisted carbonylation of o-
hydroxyacetophenone with carbon monoxide. J. Chem. Soc., Chem.
Commun. 1982, 1283−1284. (j) Wu, X. F.; Wu, L.; Jackstell, R.;
Neumann, H.; Beller, M. A General Palladium-Catalyzed Carbon-
ylative Synthesis of Chromenones from Salicylic Aldehydes and Benzyl
Chlorides. Chem. - Eur. J. 2013, 19, 12245−12248. (k) Mizuno, T.;
Nishiguchi, I.; Hirashima, T.; Ogawa, A.; Kambe, N.; Sonoda, N. Facile
Synthesis of 4-Hydroxycoumarins by Sulfur-Assisted Carbonylation of
2′-Hydroxyacetophenones with Carbon Monoxide. Synthesis 1988,
1988, 257−259.
ACKNOWLEDGMENTS
■
The authors thank the Chinese Scholarship Council for
financial support. The analytic support of Dr. W. Baumann,
Dr. C. Fisher, S. Buchholz, and S. Schareina in LIKAT is
gratefully acknowledged. We also appreciate the general
support from Professors Matthias Beller and Armin Borner in
LIKAT.
̈
REFERENCES
■
(1) (a) Ward, R. S. Selectivity in Organic Synthesis; John Wiley &
Sons: 1999. (b) Bindra, J. Creativity in Organic Synthesis; Elsevier:
1975. (c) Peng, J.-B.; Wu, X.-F. Ligand- and Solvent-Controlled Regio-
and Chemodivergent Carbonylative Reactions. Angew. Chem., Int. Ed.
2018, 57, 1152−1160.
(2) For selected reviews on palladium-catalyzed carbonylations, see:
(a) Wu, X.-F. Palladium-Catalyzed Carbonylative Transformation of
Aryl Chlorides and Aryl Tosylates. RSC Adv. 2016, 6, 83831−83837.
(b) Liu, Q.; Zhang, H.; Lei, A. Oxidative Carbonylation Reactions:
Organometallic Compounds (R-M) or Hydrocarbons (R-H) as
Nucleophiles. Angew. Chem., Int. Ed. 2011, 50, 10788−10799.
(c) Wu, X.-F.; Neumann, H.; Beller, M. Palladium-Catalyzed Oxidative
Carbonylation Reactions. ChemSusChem 2013, 6, 229−241. (d) Sumi-
no, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Carbonylation Reactions of
Alkyl Iodides through the Interplay of Carbon Radicals and Pd
Catalysts. Acc. Chem. Res. 2014, 47, 1563−1574. (e) Shen, C.; Wu, X.-
F. Palladium-Catalyzed Carbonylative Multicomponent Reactions.
Chem. - Eur. J. 2017, 23, 2973−2987. (f) Gabriele, B.; Mancuso, R.;
Salerno, G. Oxidative Carbonylation as a Powerful Tool for the Direct
Synthesis of Carbonylated Heterocycles. Eur. J. Org. Chem. 2012, 2012,
6825−6839.
(3) For selected examples on propiolic substrates transformation, see:
(a) Shi, Z.; He, C. Efficient Functionalization of Aromatic C-H Bonds
Catalyzed by Gold(III) under Mild and Solvent-Free Conditions. J.
Org. Chem. 2004, 69, 3669−3671. (b) Song, C. E.; Jung, D.; Choung,
S. Y.; Roh, E. J.; Lee, S. Dramatic Enhancement of Catalytic Activity in
an Ionic Liquid: Highly Practical Friedel-Crafts Alkenylation of Arenes
with Alkynes Catalyzed by Metal Triflates. Angew. Chem., Int. Ed. 2004,
43, 6183−6185. (c) Trost, B. M.; Li, C.-J. Phosphine-Catalyzed
Isomerization-Addition of Oxygen Nucleophiles to 2-Alkynoates. J.
Am. Chem. Soc. 1994, 116, 10819−10820. (d) Jung, C.-K.; Wang, J.-C.;
Krische, M. J. Phosphine-Mediated Reductive Condensation of γ-
Acyloxy Butynoates: A Diversity Oriented Strategy for the
Construction of Substituted Furans. J. Am. Chem. Soc. 2004, 126,
4118−4119.
(4) Natte, K.; Chen, J.; Neumann, H.; Beller, M.; Wu, X.-F.
Palladium-Catalyzed Oxidative Carbonylative Coupling of Arylboronic
Acids with Terminal Alkynes to Alkynones. Org. Biomol. Chem. 2014,
12, 5590−5593.
(5) (a) Gabriele, B.; Salerno, G.; Veltri, L.; Costa, M. Synthesis of 2-
ynamides by direct palladium-catalyzed oxidative aminocarbonylation
of alk-1-ynes. J. Organomet. Chem. 2001, 622, 84−88. (b) Izawa, Y.;
Shimizu, I.; Yamamoto, A. Palladium-Catalyzed Oxidative Carbon-
ylation of 1-Alkynes into 2-Alkynoates with Molecular Oxygen as
Oxidant. Bull. Chem. Soc. Jpn. 2004, 77, 2033−2045. (c) Zhang, C.;
Liu, J.; Xia, C. Palladium−N-heterocyclic carbene (NHC)-catalyzed
synthesis of 2-ynamides via oxidative aminocarbonylation of alkynes
with amines. Catal. Sci. Technol. 2015, 5, 4750−4754. (d) Gadge, S. T.;
Khedkar, M. V.; Lanke, S. R.; Bhanage, B. M. Oxidative Amino-
carbonylation of Terminal Alkynes for the Synthesis of Alk-2-ynamides
by Using Palladium-on-Carbon as Efficient, Heterogeneous, Phos-
phine-Free, and Reusable Catalyst. Adv. Synth. Catal. 2012, 354,
2049−2056. (e) Mane, R. S.; Bhanage, B. M. Palladium-Catalyzed
(9) (a) Zhu, F.; Li, Y.; Wang, Z.; Wu, X.-F. Iridium-Catalyzed
Carbonylative Synthesis of Chromenones from Simple Phenols and
Internal Alkynes at Atmospheric Pressure. Angew. Chem., Int. Ed. 2016,
55, 14151−14154. (b) Zhu, F.; Wang, Z.; Li, Y.; Wu, X.-F. Iridium-
Catalyzed and Ligand-Controlled Carbonylative Synthesis of Flavones
from Simple Phenols and Internal Alkynes. Chem. - Eur. J. 2017, 23,
3276−3279.
D
Org. Lett. XXXX, XXX, XXX−XXX