Journal of Medicinal Chemistry
ARTICLE
(2) Steinberg, M. H. Pathophysiologically based drug treatment of
sickle cell disease. Trends Pharmacol. Sci. 2006, 27, 204–210.
(3) Safo, M. K.; Abdulmalik, O.; Danso-Danquat, R.; Burnett, J. C.;
Nokuri, S.; Joshi, G. S.; Musayev, F. N.; Asakura, T.; Abraham, D. J.
Structural basis for the potent antisickiling effects of a novel class of five
membered heterocyclic aldehydic compounds. J. Med. Chem. 2004,
47, 4665–4676.
reactive oxygen species-mediated p38 MAPK signaling and histone H4
acetylation in adult erythropoiesis. Blood. 2007, 110 (8), 2864–2871.
(23) Moutouh-de-Parseval, L. A.; Verhelle, D.; Glezer, E.; Jensen-
Pergakes, K.; Ferguson, G. D.; Corral, L. G.; Morris, C. L.; Muller, G.;
Brady, H.; Chan, K. Pomalidomide and lenalidomide regulate erytho-
poiesis and fetal hemoglobin production in human CD34+ cells. J. Clin.
Invest. 2008, 118 (1), 248–258.
(4) Solomon, L. R. Pain management in adults with sickle cell
disease in a medical center emergency department. J. Natl. Med. Assoc.
2010, 102 (11), 1025–1032.
(5) Steinberg, M. H. Predicting clinical severity in sickle cell
anaemia. Br. J. Haematol. 2005, 129 (4), 465–481.
(24) Meiler, S. E.; Wade, M.; Chen, Z.; Ramalingam, P.; Moutouhde
Parseval, L. A.; Corral, L. G.; Kutlar, F.; Kutlar, A. Pomalidomide
augments erythropoiesis and fetal hemoglobin production in a huma-
nized mouse model of sickle cell disease. Blood (ASH Annu. Meet. Abstr.)
2008, 112, 536.
(6) Bonds, D. R. Three decades of innovation in the management of
sickle cell disease: the road to understanding the sickle cell disease
clinical phenotype. Blood Rev. 2005, 19, 99–110.
(7) Green, N. S.; Barral, S. Genetic modifiers of HbF and response to
hydroxyurea in sickle cell disease. Pediatr. Blood Cancer 2011, 56 (2),
177–181.
(25) Santos, J. L.; Chung, M. C.; Lima, L. M.; Costa, F. F.; Lanaro, C.
Use of Phthalimide and/or Sulphonamide Derivatives in the Treatment
of Diseases Which Require Reducing the TNF-alpha Levels and an
Exogenous Source of Nitric Oxide, Phthalimide Derivatives, Sulphona-
mide Derivatives, and a Method for Obtaining a Sulphonamide Deriva-
tive. WO 073940, June 18, 2009.
(8) Rodgers, G. P.; Dover, G. J.; Noguchi, C. T.; Schechter, A. N.;
Nienhuis, A. W. Hematologic responses of patients with sickle cell
disease to treatment with hydroxyurea. N. Engl. J. Med. 1990,
322, 1037–1045.
(9) Maley, J. H.; Lasker, G. F.; Kadowitz, P. J. Nitric oxide and
disorders of the erythrocyte: emerging roles and therapeutic targets.
Cardiovasc. Hematol. Disord.: Drug Targets. 2010, 10 (4), 284–291.
(10) Huang, J.; Kim-Shapiro, D. B.; King, S. B. Catalase-mediated
nitric oxide formation from hydroxyurea. J. Med. Chem. 2004, 47 (14),
3495–3501.
(11) Head, C. A.; Swerdlow, P.; McDade, W. A.; Joshi, R. M.; Ikuta,
T.; Cooper, M. L.; Eckman, J. R. Beneficial effects of nitric oxide
breathing in adult patients with sickle cell crisis. Am. J. Hematol. 2010,
85 (10), 800–802.
(12) Akinsheye, I.; Klings, E. S. Sickle cell anemia and vascular
dysfunction: the nitric oxide connection. J. Cell. Physiol. 2010, 224 (3),
620–625.
(26) Hess, S.; Akermann, M. A.; Wnendt, S.; Zwingenberger, K.;
Eger, K. Synthesis and immunological activity of water-soluble thalido-
mide prodrugs. Bioorg. Med. Chem. 2001, 9, 1279–1291.
(27) Sorba, G.; Medana, C.; Fruttero, R.; Cena, C.; Di Stilo, A.; Galli,
U.; Gasco, A. Water soluble furoxan derivatives as NO prodrugs. J. Med.
Chem. 1997, 40 (2288), 463–469.
(28) Mantione, C. R.; Rodrigues, R. A. bradykinin (BK)1-receptor
antagonist blocks capsaicin-induced ear inflammation in mice. Br. J.
Pharmacol. 1990, 99, 516–518.
(29) Savill, J. S.; Wyllie, A. H.; Henson, J. E.; Walport, M. J.; Henson,
P. M.; Haslett, C. Macrophage phagocytosis of aging neutrophils in
inflammation. Programmed cell death in the neutrophil leads to its
recognition by macrophages. J. Clin. Invest. 1989, 83 (3), 865–875.
(30) Collier, H. O. J.; Dinneen, L. C.; Johnson, C. A.; Schneider, C.
The abdominal constriction response and its suppression by analgesic
drugs in the mouse. Br. J. Pharmacol. 1968, 32, 285–291.
(31) Dos Santos, J. L.; Chin, C. M. Recent insights on the medicinal
chemistry of sickle cell disease. Curr. Med. Chem. 2011, 18 (15), 2339–2358.
(32) Inati, A.; Khoriaty, E.; Musallam, K. M.; Taher, A. T. Iron
chelation therapy for patients with sickle cell disease and iron overload.
Am. J. Hematol. 2010, 10, 782–786.
(13) Weiner, D. L.; Hibberd, P. L.; Betit, P.; Cooper, A. B.; Botelho,
C. A.; Brugnara, C. Preliminary assessment of inhaled nitric oxide for
acute vaso-occlusive crisis in pediatric patients with sickle cell disease.
JAMA, J. Am. Med. Assoc. 2003, 289 (9), 1136–1142.
(14) Lanaro, C.; Franco-Penteado, C. F.; Albuqueque, D. M.; Saad,
S. T.; Conran, N.; Costa, F. F. Altered levels of cytokines and
inflammatory mediators in plasma and leukocytes of sickle cell anemia
patients and effects of hydroxyurea therapy. J. Leukocyte Biol. 2009, 85
(2), 235–242.
(33) Akinsheye, I.; Alsultan, A.; Solovieff, N.; Ngo, D.; Baldwin,
C. T.; Sebastiani, P.; Chui, D. H.; Steinberg, M. H. Fetal hemoglobin in
sickle cell anemia. Blood. 2011, 118 (1), 19–27.
(34) McNaughton-Smith, G. A.; Burns, J. F.; Stocker, J. W.; Rigdon,
G. C.; Creech, C.; Arrington, S.; Shelton, T.; de Franceschi, L. Novel
inhibitors of the Gardos channel for the treatment of sickle cell disease. J.
Med. Chem. 2008, 51 (4), 976–982.
(15) Pathare, A.; Kindi, S. A.; Daar, S.; Dennison, D. Cytokines in
sickle cell disease. Hematology 2003, 8 (5), 329–337.
(16) Malavꢀe, I.; Perdomo, Y.; Escalona, E.; Rodriguez, E.; Anchustegui,
M.; Malavꢀe, H. Level of tumor necrosis factor alpha/cachectin (TNF alpha)
in sera from patients with sickle cell disease. Acta Haematol. 1993, 90,
172–176.
(35) Nnamani, I. N.; Joshi, G. S.; Danso-Danquah, R.; Abdulmalik,
O.; Asakura, T.; Abraham, D. J.; Safo, M. K. Pyridyl derivatives of
benzaldehyde as potential antisickling agents. Chem. Biodiversity 2008, 5
(9), 1762–1769.
(17) Laurance, S.; Pellay, F. X.; Dossou-Yovo, O. P.; Verger, E.;
Krishnamoorthy, R.; Lapoumeroulie, C.; Benecke, A.; Elion, J. Hydro-
xycarbamide stimulates the production of proinflammatory cytokines by
endothelial cells: relevance to sickle cell disease. Pharmacogenet. Geno-
mics 2010, 20 (4), 257–268.
(36) Orringer, E. P.; Casella, J. F.; Ataga, K. I.; Koshy, M.; Adams-
Graves, P.; Luchtman-Jones, L.; Wun, T.; Watanabe, M.; Shafer, F.;
Kutlar, A.; Abboud, M.; Steinberg, M.; Adler, B.; Swerdlow, P.;
Terregino, C.; Saccente, S.; Files, B.; Ballas, S.; Brown, R.; Wojtowicz-
Praga, S.; Grindel, J. M. Purified poloxamer 188 for treatment of acute
vaso-occlusive crisis of sickle cell disease: a randomized controlled trial.
JAMA, J. Am. Med. Assoc. 2001, 286 (17), 2099–2106.
(18) Julius, D.; Basbaum, A. I. Molecular mechanisms of nocicep-
tion. Nature 2001, 413, 203–210.
(19) Ribeiro, R. A; Vale, M. L.; Ferreira, S. H.; Cunha, F. Q.
Analgesic effect of thalidomide on inflammatory pain. Eur. J. Pharmacol.
2000, 391, 97–103.
(20) Dworkis, D. A.; Klings, E. S.; Solovieff, N.; Li, G.; Milton, J. N.;
Hartley, S. W.; Melista, E.; Parente, J.; Sebastiani, P.; Steinberg, M. H.;
Baldwin, C. T. Severe sickle cell anemia is associated with increased plasma
levels of TNF-R1 and VCAM-1. Am. J. Hematol. 2011, 86 (2), 220–223.
(21) Buchanan, G. R.; Debaun, M. R.; Quinn, C. T.; Steinberg, M. H.
Sickle cell disease. Hematology 2004, 35–47.
(37) Dos Santos, J. L.; Lanaro, C.; Chin, C. M. Advances in sickle cell
disease treatment: from drug discovery until the patient monitoring.
Cardiovasc. Hematol. Agents Med. Chem. 2011, 9 (2), 113–127.
(38) Haywood, C., Jr.; Beach, M. C.; Bediako, S.; Carroll, C. P.;
Lattimer, L.; Jarrett, D.; Lanzkron, S. Examining the characteristics and
beliefs of hydroxyurea users and nonusers among adults with sickle cell
disease. Am. J. Hematol. 2011, 86 (1), 85–87.
(39) Saraceno, R.; Teoli, M.; Chimenti, S. Hydroxyurea associated
with concomitant occurrence of diffuse longitudinal melanonychia and
multiple squamous cell carcinomas in an elderly subject. Clin. Ther.
2008, 30 (7), 1324–1329.
(22) Aerbajinai, W.; Zhu, J.; Gao, Z.; Chin, K.; Rodgers, G. P.
Thalidomide induces gamma-globin gene expression through increased
5818
dx.doi.org/10.1021/jm200531f |J. Med. Chem. 2011, 54, 5811–5819