10.1002/chem.201804705
Chemistry - A European Journal
COMMUNICATION
[5] (a) O. Allemann, S. Duttwyler, P. Romanato, K. K. Baldridge, J. S.
Siegel, Science 2011, 332, 574-577; (b) O. Allemann, K. K. Baldridge,
J. S. Siegel, Org. Chem. Front. 2015, 2, 1018-1021.
[6] P. A. Champagne, Y. Benhassine, J. Desroches, J. F. Paquin, Angew.
Chem. Int. Ed. 2014, 53, 13835-13839.
[7] (a) T. Stahl, H. F. T. Klare, M. Oestreich, ACS Catalysis 2013, 3, 1578-
1587; (b) W. Chen, C. Bakewell, M. Crimmin, Synthesis 2017, 49, 810-
821; (c) J. M. Bayne, D. W. Stephan, Chem. Soc. Rev. 2016, 45, 765-774.
[8] (a) V. J. Scott, R. Celenligil-Cetin, O. V. Ozerov, J. Am. Chem. Soc.
2005, 127, 2852-2853; (b) C. Douvris, O. V. Ozerov, Science 2008, 321,
1188-1190; (c) C. Douvris, C. M. Nagaraja, C.-H. Chen, B. M. Foxman,
O. V. Ozerov, J. Am. Chem. Soc. 2010, 132, 4946-4953; (d) R. Panisch,
M. Bolte, T. Müller, J. Am. Chem. Soc. 2006, 128, 9676-9682.
[9] (a) J. Terao, S. A. Begum, Y. Shinohara, M. Tomita, Y. Naitoh, N.
Kambe, Chem. Commun. 2007, 855-857; (b) J. Terao, M. Nakamura, N.
Kambe, Chem. Commun. 2009, 6011-6013.
and is kinetically favoured. While a similar mechanism with a
higher overall barrier of 23.8 kcal/mol is supported (see ESI) for
the reaction of Pent-F, the observation of 1-pentene and pentane
is consistent with competing hydride transfer to the β-hydrogen
(proton) and the cationic -carbon of pentyl group.
The adduct (Bn-F)·(C6F5)2BH is computed to have an ionic
nature with elongated B-F and F-C bonds (1.632 and 1.568 Å,
respectively). Hydride transfer to Bn occurs via the transition
structure TS7 affording toluene and (C6F5)2BF. However, direct
dissociation of (Bn-F)·(C6F5)2BH to the ion pair [Bn]+[(C6F5)2BHF]-
is kinetically favourable due to solvation of the [Bn]+ cation.
Trapping of the transient [Bn]+ cation by benzene molecule is
computed to be nearly barrierless via TS9, consistent with
experiment.
[10]W. Gu, M. R. Haneline, C. Douvris, O. V. Ozerov, J. Am. Chem. Soc.
2009, 131, 11203-11212.
[11]M. Ahrens, G. Scholz, T. Braun, E. Kemnitz, Angew. Chem. Int . Ed.
2013, 52, 5328-5332.
[12]C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W. Stephan, Science
2013, 341, 1374-1377.
[13]B. F. Pan, F. P. Gabbai, J. Am. Chem. Soc. 2014, 136, 9564-9567.
[14]R. Maskey, M. Schadler, C. Legler, L. Greb, Angew. Chem. Int. Ed. 2018,
57, 1717-1720.
[15]S. Chitnis, F. Kirscher, D. W. Stephan, Chem. Eur. J. 2018, 4, 6543 –
6546.
In summary, we have uncovered that hydridoboranes can
be used to reduce C(sp3)-F bonds at ambient conditions without
the use of catalysts or initiators. In particular, the electrophilic
borane HB(C6F5)2 was shown to be reactive with secondary and
primary fluoroalkanes, affording initial olefinic products via
dehydrofluorination, which in the presence of additional
hydridoborane affords a net C-F borylation. This constitutes, to
the best of our knowledge, the only example of catalyst-free
C(sp3)-F borylation involving a neutral hydridoborane reagent.
While 9-BBN and (C6F5)2BH effect hydrodefluorination of tertiary
C-F bonds, benzyl fluorides undergo Friedel-Crafts chemistry in
the presence of arene solvents. Overall, this provides new routes
to C-F borylation and room temperature Friedel-Crafts chemistry.
We are continuing to develop strategies and applications using
main group species to effect chemistry of C-F bonds.
[16]F. Seel, Z. Anorg. Allge. Chem. 1943, 250, 331-351.
[17](a) P. v. R. Schleyer, R. C. Fort, W. E. Watts, M. B. Comisarow, G. A.
Olah, J. Am. Chem. Soc. 1964, 86, 4195-4197; (b) G. A. Olah, G. K. S.
Prakash, Carbocation chemistry. , Wiley-Interscience, Hoboken, N.J.,
2004; (c) G. A. Olah, S. Kuhn, J. Org. Chem. 1964, 29, 2317-2320; (d)
G. A. Olah, T. Yamato, T. Hashimoto, J. G. Shih, N. Trivedi, B. P. Singh,
M. Piteau, J. A. Olah, J. Am. Chem. Soc. 1987, 109, 3708-3713.
[18]I. L. Knunyants, Y. V. Zeifman, T. V. Lushnikova, E. M. Rokhlin, Y. G.
Abduganiev, U. Utebaev, J. Fluorine Chem. 1975, 6, 227-240.
[19]A. Solovyev, Q. Chu, S. J. Geib, L. Fensterbank, M. Malacria, E. Lacôte,
D. P. Curran, J. Am. Chem. Soc. 2010, 132, 15072–15080.
[20]C. B. Caputo, D. W. Stephan, Organometallics 2012, 31, 27-30.
[21](a) B. Bartocha, W. A. G. Graham, F. G. A. Stone, J. Inorg. Nucl. Chem.
1958, 6, 119-129; (b) J. R. Phillips, F. A. Stone, J. Chem. Soc. 1962, 94-
97; (c) H. C. Brown, G.-M. Chen, M. P. Jennings, P. V. Ramachandran,
Angew. Chem. Int . Ed. 1999, 38, 2052-2054.
Acknowledgements
NSERC of Canada is thanked for financial support. D.W.S is
grateful for the award of a Canada Research Chair and a Visiting
Einstein Fellowship at TU Berlin. K.B is grateful for the support of
an NSERC CGS-D scholarship. Z.W.Q. acknowledges financial
support from the Deutsche Forschungsgemeinschaft in the
framework of the Leibniz prize to Prof. Stefan Grimme.
[22]R. D. Chambers, T. Chivers, J. Am. Chem. Soc. 1965, 3933-3939.
[23]I. Peuser, R. C. Neu, X. Zhao, M. Ulrich, B. Schirmer, J. A. Tannert, G.
Kehr, R. Fröhlich, S. Grimme, G. Erker, D. W. Stephan, Chem. Eur. J.
2011, 17, 9640-9650.
[24]J. Terao, S. A. Begum, Y. Shinohara, M. Tomita, Y. Naitoh, N. Kambe,
Chem. Comm. 2007, 855-857.
Keywords: hydridoboranes • Alkyl-fluorides • C-F reduction •
borylation • Friedel-Crafts
[25]X. Zhao, D. W. Stephan, J. Am. Chem. Soc. 2011, 133, 12448-12450.
[26]D. J. Parks, W. E. Piers, G. P. A. Yap, Organometallics 1998, 7, 5492-
5503.
[27](a) G. A. Olah, S. J. Kuhn, J. Org. Chem. 1964, 29, 2317-2320; (b) G. A.
Olah, T. Yamato, T. Hashimoto, J. G. Shih, N. Trivedi, B. P. Singh, M.
Piteau, J. A. Olah, J. Am. Chem. Soc. 1987, 109, 3708-3713.
[28](a) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkins Trans. 1993, 799-
805; (b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theo. Chem.
Accts 1997, 97, 119-124; (c) F. Weigend, M. Häser, H. Patzelt, R.
Ahlrichs, Chem. Phys. Lett. 1998, 294, 143-152; (d) F. Eckert, A. Klamt,
AIChE Journal 2002, 48, 369-385; (e) J. Tao, J. P. Perdew, V. N.
Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401; (f) F.
Weigend, F. Furche, R. Ahlrichs, J. Chem. Phys. 2003, 119, 12753-
12762; (g) P. Deglmann, K. May, F. Furche, R. Ahlrichs, Chem. Phys.
Lett. 2004, 384, 103-107; (h) F. Weigend, R. Ahlrichs, Phys. Chem.
Chem. Phys. 2005, 7, 3297-3305; (i) Y. Zhao, D. G. Truhlar, J. Phys.
Chem. A 2005, 109, 5656-5667; (j) F. Weigend, Phys. Chem. Chem. Phys.
2006, 8, 1057-1065; (k) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J.
Chem. Phys. 2010, 132, 154104-154119; (l) S. Grimme, S. Ehrlich, L.
Goerigk, J. Comp. Chem. 2011, 32, 1456-1465; (m) S. Grimme, Chem.
Eur. J. 2012, 18, 9955-9964; (n) F. Eckert, A. Klamt, COSMOtherm,
Version C3.0, Release 16.01; COSMOlogic GmbH & Co. KG,
Leverkusen, Germany 2015,
[1] T. L. Cottrell, The Strengths of Chemical Bonds,, Second ed.,
Butterworths Publications Ltd., London, 1958.
[2] (a) G. Theodoridis, in Advances in Fluorine Science, Vol. 2 (Ed.: A.
Tressaud), Elsevier, 2006, pp. 121-175; (b) T. Fujiwara, D. O’Hagan, J.
Fluorine Chem. 2014, 167, 16-29; (c) M. Braun, J. Eicher, in Modern
Synthesis Processes and Reactivity of Fluorinated Compounds (Eds.: H.
Groult, F. R. Leroux, A. Tressaud), Elsevier, 2017, pp. 7-25.
[3] (a) J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014,
114, 2432-2506; (b) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J.
Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315-8359; (c) Y.
Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Acena, V. A. Soloshonok,
K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422-518; (d) Y. Zhu, J. Han, J.
Wang, N. Shibata, M. Sodeoka, V. A. Soloshonok, J. A. S. Coelho, F. D.
Toste, Chem. Rev. 2018, 118, 3887-3964.
[4] (a) F. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2002, 102, 4009-
4092; (b) H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119-2183.
This article is protected by copyright. All rights reserved.