Table 2 Spectroscopic data of the first electronic transition (S0 2 S1) of the H-PPCys 6 and the BF2-PPCys 7: A1 = 3ea
A2
6
l00A/nm
e
00/MÀ1 cmÀ1
f
7
l00A/nm
e
00/MÀ1 cmÀ1
f
l00F/nm
Dn~A–F/cmÀ1
FF
3a
3b
3c
3d
3e
3f
6a
6b
6c
6d
6e
6f
6g
6h
6i
708
720
718
734
731
734
739
739
739
100 000
108 000
97 000
116 000
118 000
122 000
132 000
134 000
134 000
0.62
0.69
0.61
0.72
0.71
0.70
0.73
0.76
0.76
7a
7b
7c
7d
7e
7f
7g
—
7i
719
718
730
742
754
758
770
—
178 000
162 000
179 000
191 000
205 000
236 000
213 000
—
0.76
0.77
0.76
0.79
0.83
0.86
0.83
—
740
739
751
759
773
774
786
—
400
350
350
350
300
300
300
—
0.66
0.58
0.58
0.60
0.59
0.59
0.41
—
3g
3h
763
244 000
0.91
782
300
0.56
a
In chloroform at room temperature, absorption/emission wavelength l00A/l00F, molar decadic absorption coefficient e00, oscillator strength f,
Stokes shift Dn~A–F and fluorescence quantum yield FF.
the derivatization of this new class of compounds and their use
in ultrasensitive microscopy in live cells tissues.
Support by the Bioimaging Center of the University of
Konstanz and the SFB 767, as well as by C. Strasser for help
with the cellular samples, is gratefully acknowledged.
Notes and references
1 (a) R. Y. Tsien, L. Ernst and A. Waggoner, in Handbook of
Biological Confocal Microscopy, ed. J. B. Pawley, Springer, New
York, 2006, pp. 338–352; (b) J. Lippincott-Schwartz and
G. H. Patterson, Science, 2003, 300, 87.
2 M. S. T. Goncalves, Chem. Rev., 2009, 109, 190.
3 (a) R. Weissleder, Nat. Biotechnol., 2001, 19, 316; (b) Near-Infrared
Dyes for High Technology Applications, NATO Series 3, ed.
S. Dahne, U. Resch-Genger, O. S. Wolfbeis, Kluwer, Dordrecht,
1998, vol. 52.
4 (a) A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski,
W. Semmler, B. Wiedenmann and C. Grotzinger, Nat. Biotechnol.,
2001, 19, 327; (b) R. Weissleder, C. H. Tung, U. Mahmood and
A. Bogdanov, Nat. Biotechnol., 1999, 17, 375; (c) Y. Ye, S. Bloch,
B. Xu and S. Achilefu, J. Med. Chem., 2006, 49, 2268.
5 (a) J. O. Escobedo, O. Rusin, S. Lim and R. M. Strongin, Curr.
Opin. Chem. Biol., 2010, 14, 64; (b) J. J. Gassensmith,
J. M. Baumesm and B. D. Smith, Chem. Commun., 2009, 6329;
(c) A. B. Descalzo, H.-J. Xu, Z. Shen and K. Rurack, Ann. N. Y.
Acad. Sci., 2008, 1130, 164; (d) M. Taniguchi, D. L. Cramer,
A. D. Bhise, H. L. Kee, D. F. Bocian, D. Holten and J. S. Lindsey,
New J. Chem., 2008, 32, 947.
6 (a) G. M. Fischer, A. P. Ehlers, A. Zumbusch and E. Daltrozzo,
Angew. Chem., Int. Ed., 2007, 46, 3750; (b) G. M. Fischer,
M. Isomaki-Krondahl, I. Gottker-Schnetmann, E. Daltrozzo and
A. Zumbusch, Chem.–Eur. J., 2009, 15, 4857.
7 M. Y. Berezin, W. J. Akers, K. Guo, G. M. Fischer, E. Daltrozzo,
A. Zumbusch and S. Achilefu, Biophys. J., 2009, 97, L22.
8 (a) A. Iqbal, M. Jost, R. Kirchmayer, J. Pfenninger, A. Rochat and
O. Wallquist, Bull. Soc. Chim. Belg., 1988, 97, 615;
(b) A. C. Rochat, A. Iqbal and O. Wallquist, US Pat., 5,017,706,
1989; (c) F. Closs and R. Gompper, Angew. Chem., Int. Ed., 1987,
26, 552.
9 (a) L. G. S. Brooker and R. H. Sprague, J. Am. Chem. Soc., 1945,
67, 1869; (b) E. Daltrozzo and W. Sulger, Methine Dyes for Optical
Recording Materials, EP0217245B1, Int. Cl. C09B 23/10, G11B7/
24, Patentbl.87/15, 1992, pp. 1–88; (c) J. Fabian, J. Prak. Chem.,
1991, 333, 197; (d) E. Daltrozzo and A. Reiß, New Fluorescence
Dyes and Their Use as Fluorescence Marker, US Pat., 6, 552,
199B1, 2003, pp. 1–40; EP 1 054039A1.
Fig. 2 Images of live HeLa cells labeled with Arg9-8. Upper left:
transmission bright-field; upper right: Hoechst 33342 staining of the
cell nucleus; bottom left: NIR fluorescence intracellular Arg9-8
(excitation wavelength: 633 nm, detection wavelengths: 4650 nm,
see ESIw); bottom right: overlay of Hoechst and Arg9-8 channels
showing the localization of Arg9-8 close to but outside the nucleus,
5 h after incubation; scale bar: 20 mm.
(Fig. 2). Additional Hoechst staining shows that these aggregates
concentrate around the nucleus, but do not enter inside.
In summary, a synthetic strategy for BF2-PPCys with
asymmetric substitution pattern has been described. The
compounds show strong NIR absorption and very bright
fluorescence. The spectral properties of different derivatives
show typical cyanine dye behavior. The asymmetric substitution
allows the introduction of one functional group which can be
used for labeling applications with NIR excitation and
detection. First in vivo experiments show that the resulting
dye is brightly fluorescing in live cells and has a very good
chemical stability. We did not observe harmful effects on the
cells. The findings reported here open exciting possibilities for
10 (a) G. T. Hermanson, Bioconjugate Techniques, Academic Press,
1996; (b) A. El-Faham, R. S. Funosas, R. Prohens and
F. Albericio, Chem.–Eur. J., 2009, 15, 9404.
11 P. Lundberg and U. Langel, J. Mol. Recognit., 2003, 16, 227.
12 T. Holm, H. Johansson, P. Lundberg, M. Pooga, M. Lindgren and
U. Langel, Nat. Protocols, 2006, 1, 1001.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 5289–5291 | 5291