This work was supported by grants from Institut Universi-
taire de France (IUF) and European Research Council (ERC)
as well as a fellowship from the Algerian Ministry of Higher
Education and Scientific Research (DC). We thank Laurence
Oswald for her technical assistance and Antoine Dieudonne-
´
Vartran for preliminary work. We thank Vincent Aucagne for
a sample of THPTA.
Notes and references
1 P. E. Nielsen, M. Egholm, R. H. Berg and O. Buchardt, Science,
1991, 254, 1497–1500.
2 M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier,
D. A. Driver, R. H. Berg, S. K. Kim, B. Norden and P. E. Nielsen,
Nature, 1993, 365, 566–568.
3 K. E. Lundin, L. Good, R. Stromberg, A. Graslund and
C. I. Smith, Adv. Genet., 2006, 56, 1–51.
4 P. E. Nielsen, Mol. Biotechnol., 2004, 26, 233–248.
5 J. L. Harris and N. Winssinger, Chem.–Eur. J., 2005, 11,
6792–6801.
6 Z. L. Pianowski and N. Winssinger, Chem. Soc. Rev., 2008, 37,
1330–1336.
7 V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., Int. Ed., 2002, 41, 2596–2599.
8 C. W. Tornoe, C. Christensen and M. Meldal, J. Org. Chem., 2002,
67, 3057–3064.
9 H. C. Kolb and K. B. Sharpless, Drug Discovery Today, 2003, 8,
1128–1137.
10 M. Meldal and C. W. Tornoe, Chem. Rev., 2008, 108, 2952–3015.
11 Y. L. Angell and K. Burgess, Chem. Soc. Rev., 2007, 36,
1674–1689.
12 W. S. Horne, C. A. Olsen, J. M. Beierle, A. Montero and
M. R. Ghadiri, Angew. Chem., Int. Ed., 2009, 48, 4718–4724.
13 W. S. Horne, C. D. Stout and M. R. Ghadiri, J. Am. Chem. Soc.,
2003, 125, 9372–9376.
14 W. S. Horne, M. K. Yadav, C. D. Stout and M. R. Ghadiri, J. Am.
Chem. Soc., 2004, 126, 15366–15367.
Fig. 2 DNA-templated ligation of azido PNA with alkynic PNA.
MALDI analysis of the reaction under positive mode. *Compounds 20
and 22 have similar molecular weight and are not resolved.
15 H. Isobe, T. Fujino, N. Yamazaki, M. Guillot-Nieckowski and
E. Nakamura, Org. Lett., 2008, 10, 3729–3732.
16 A. H. El-Sagheer and T. Brown, J. Am. Chem. Soc., 2009, 131,
3958–3964.
17 F. Debaene and N. Winssinger, Org. Lett., 2003, 5, 4445–4447.
18 F. Debaene, J. Da Silva, Z. Pianowski, F. Duran and
N. Winssinger, Tetrahedron, 2007, 63, 6577–6586.
19 Z. Pianowski and N. Winssinger, Chem. Commun., 2007,
3820–3822.
20 S. Pothukanuri, Z. Pianowski and N. Winssinger, Eur. J. Org.
Chem., 2008, 3141–3148.
21 J. Michel and S. Moreau, Nucleosides, Nucleotides Nucleic Acids,
1999, 18, 1633–1637.
22 H. D. Urbina, F. Debaene, B. Jost, C. Bole-Feysot, D. E. Mason,
P. Kuzmic, J. L. Harris and N. Winssinger, ChemBioChem, 2006,
7, 1790–1797.
23 C. Dose and O. Seitz, Bioorg. Med. Chem., 2008, 16, 65–77.
24 S. Ficht, A. Mattes and O. Seitz, J. Am. Chem. Soc., 2004, 126,
9970–9981.
25 A. Mattes and O. Seitz, Angew. Chem., Int. Ed., 2001, 40,
3178–3181.
26 R. E. Kleiner, Y. Brudno, M. E. Birnbaum and D. R. Liu, J. Am.
Chem. Soc., 2008, 130, 4646–4659.
(22 + 20) afforded intermediate results but never proceeded to
completion as for the perfect match. Heating the reaction to
40 1C afforded lower conversion concurring the fact that the
azide and alkynic PNA must be hybridized to the DNA
template for the reaction to proceed. In order to semi-
quantitatively assess the yield of the reaction, the relative
intensity of 21 and the product of the cycloaddition (20 + 21)
in mixtures of known proportion (100 : 1 to 1 : 100) were
analyzed by MALDI (Fig. S5, ESIw). Based on these
references, the yield of the perfect match reaction (20 + 21)
can be extrapolated to be between 90%–100% while the
reaction with the non-complementary sequence (20 + 23)
has below 10% conversion. While these results are not of a
quantitative nature, they clearly highlight the potential
to translate DNA instructions into synthetic nucleic acid
polymers.
These results demonstrate the suitability of a triazole in lieu
of the amide linkage in PNA and enable the coupling of PNA
fragments by templated reactions. The versatility of the
‘‘click’’ cycloaddition coupled to the comparable affinity and
sequence fidelity of t1 modified PNA for DNA should make
these clickable PNAs an important addition in nucleic acid
applications and broadens the scope of PNA-encoding
technologies. The difference in Tm obtained between t1 and t2
junction in click PNA (cPNA) should be of interest in supra-
molecular systems requiring different hybridization dynamics.
27 Y. Brudno, M. E. Birnbaum, R. E. Kleiner and D. R. Liu, Nat.
Chem. Biol., 2010, 6, 148–155.
28 Y. Ura, J. M. Beierle, L. J. Leman, L. E. Orgel and M. R. Ghadiri,
Science, 2009, 325, 73–77.
29 R. Kumar, A. El-Sagheer, J. Tumpane, P. Lincoln,
L. M. Wilhelmsson and T. Brown, J. Am. Chem. Soc., 2007, 129,
6859–6864.
30 M. W. Kanan, M. M. Rozenman, K. Sakurai, T. M. Snyder and
D. R. Liu, Nature, 2004, 431, 545–549.
31 V. Hong, S. I. Presolski, C. Ma and M. G. Finn, Angew. Chem.,
Int. Ed., 2009, 48, 9879–9883.
ꢀc
This journal is The Royal Society of Chemistry 2010
5478 | Chem. Commun., 2010, 46, 5476–5478