promising way to use ionic attractions as a design element,
overcoming their limitation of little intrinsic directional
disposition. We are currently preparing chiral versions of these
cavitands for use as asymmetric hosts for anions, with a view
towards applications in asymmetric catalysis.
2 S. Le Gac and I. Jabin, Chem.–Eur. J., 2008, 14, 548–557;
J. L. Atwood and A. Szumna, Chem. Commun., 2003, 940–941;
M. Hamon, M. Menand, S. Le Gac, M. Luhmer, V. Dalla and
´
I. Jabin, J. Org. Chem., 2008, 73, 7067–7071; T. van der Wijst,
C. F. Guerra, M. Swart, F. M. Bickelhaupt and B. Lippert, Angew.
Chem., Int. Ed., 2009, 48, 3285–3287.
3 J. L. Sessler, S. K. Kim, D. E. Gross, C. H. Lee, J. S. Kim and
V. M. Lynch, J. Am. Chem. Soc., 2008, 130, 13162–13166;
J. L. Atwood and A. Szumna, J. Am. Chem. Soc., 2002, 124,
10646–10647.
Experimental
Single crystals of 1 were grown from a mixture of methanol–
chloroform. A pale yellow crystal was mounted on MiTeGen
MicroMounts with MiTeGen LV Cryo Oil to prevent
evaporation of enclosed solvents and measured on a Bruker
D8 APEX II Diffractometer using monochromatized MoKa
radiation (l = 0.71073 A) at 100(2) K. High values of R and
wR are due to disordered solvent molecules present in the unit
cell (Table 2). The structure was refined by full-matrix least
squares based on F2 (SHELXL97).14
4 A. Aydogan, D. J. Coady, S. K. Kim, A. Akar, C. W. Bielawski,
M. Marquez and J. L. Sessler, Angew. Chem., Int. Ed., 2008, 47,
9648–9652; M. D. Lankshear, I. M. Dudley, K.-M. Chan,
A. R. Cowley, S. M. Santos, V. Felix and P. D. Beer, Chem.–Eur.
J., 2008, 14, 2248–2263; K. Zhu, S. Li, F. Wang and F. Huang,
J. Org. Chem., 2008, 74, 1322–1328.
5 H. J. Schneider, Angew. Chem., Int. Ed., 2009, 48, 3924–3977.
6 A. R. Far, A. Shivanyuk and J. Rebek, J. Am. Chem. Soc., 2002,
124, 2854–2855.
7 R. J. Hooley, H. J. Van Anda and J. Rebek, Jr., J. Am. Chem. Soc.,
2006, 128, 3894–3895; S. M. Biros and J. Rebek Jr., Chem. Soc.
Rev., 2007, 36, 93–104.
8 A. Shivanyuk, J. C. Friese and J. Rebek Jr., Tetrahedron, 2003, 59,
7067–7070.
9 E. Menozzi, H. Onagi, A. L. Rheingold and J. Rebek, Eur. J. Org.
Chem., 2005, 3633–3636.
10 J. M. Mahoney, G. U. Nawaratna, A. M. Beatty, P. J. Duggan and
B. D. Smith, Inorg. Chem., 2004, 43, 5902–5907; J. M. Mahoney,
K. A. Stucker, H. Jiang, I. Carmichael, N. R. Brinkmann,
A. M. Beatty, B. C. Noll and B. D. Smith, J. Am. Chem. Soc.,
2005, 127, 2922–2928.
11 M. H. Abraham, J. Chem. Soc., Perkin Trans 2, 1972, 1343–1357.
12 C. L. Perrin and T. J. Dwyer, Chem. Rev., 1990, 90, 935–967.
13 D. M. Rudkevich, G. Hilmersson and J. Rebek, J. Am. Chem. Soc.,
1997, 119, 9911–9912.
Acknowledgements
The authors gratefully acknowledge Alyssa Roche and Grant
Ruehle for their contributions to the cavitand synthesis and
the University of Denver for financial support.
Notes and references
1 G. J. Kirkovits, J. A. Shriver, P. A. Gale and J. L. Sessler,
J. Inclusion Phenom. Macrocyclic Chem., 2001, 41, 69–75;
B. D. Smith, in Macrocyclic Chemistry: Current Trends and
Future Perspectives, ed. K. Gloe and B. Antonioli, Kluwer,
London, 2005, pp. 137–152.
¨ ¨
14 G. M. Sheldrick, SHELXL97, University of Gottingen, Gottingen,
Germany, 1997.
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010 New J. Chem., 2010, 34, 1097–1099 | 1099