166
S. Sobhani et al. / Applied Catalysis A: General 409–410 (2011) 162–166
O
aldehydes and malononitrile. The magnetic catalyst was easily iso-
lated from the reaction mixture by magnetic decantation using an
external magnet and reused at least five times without significant
degradation in the activity.
X
Y
(R'O)2P
CHO
+
X
Y
NPS- -Fe2O3 (1 mol%)
solvent-free, 60 ºC
P(OR')3
+
Cl
Cl
Acknowledgement
Scheme 3.
We are thankful to Birjand University Research Council for their
support on this work.
Table 3
One-pot synthesis of -phosphonomalonates from different in situ generated
Michael acceptors and trialkyl phosphites catalyzed by NPS-␥-Fe2O3.
Entry
R
X
Y
Product
4
Time (h)
Yielda (%)
Supplementary data associated with this article can be found, in
1
2
3
4
5
6
Et
CN
CN
CN
CN
CO2Et
H
CN
CN
CN
CO2Et
CO2Et
NO2
0.5
2
3
8
24
88
85
80
75b
Me
iso-Pr
Et
Et
Et
13
14
15
–
References
c
–
–
0
[1] M.C. Allen, W. Fuhrer, B. Tuck, R. Wade, J.M. Wood, J. Med. Chem. 32 (1989)
1652–1661.
[2] D.V. Patel, K. Rielly-Gauvin, D.E. Ryono, Tetrahedron Lett. 31 (1990) 5587–5590.
[3] B. Stowasser, K.H. Budt, J.Q. Li, A. Peyman, D. Ruppert, Tetrahedron Lett. 33
(1992), 6625–2228.
[4] P. Kafarski, B. Lejczak, Phosphorus, Sulfur Silicon Relat Elem. 63 (1991)
193–215.
[5] E.K. Baylis, C.D. Campbell, J.G. Dingwall, J. Chem. Soc, Perkin Trans. 1 (1984)
2845–2853.
a
Isolated yield, 4-chlorobenzaldehyde (1 mmol), active methylene group
(1 mmol), trialkyl phosphite (1 mmol), catalyst (0.01 mmol), 50 ◦C, solvent-free
conditions. All the products were characterized by spectroscopic methods and com-
pared with the authentic spectra [13,40,47].
b
d.r. = 50:50, according to NMR.
Trace.
c
[6] F.R. Atherton, C.H. Hassal, R.W. Lambert, J. Med. Chem. 29 (1986) 29–40.
[7] B.E. Maryanoff, A.B. Reitz, Chem. Rev. 89 (1989) 863–927.
[8] A.N. Pudovik, I.V. Konovalova, Synthesis (1979) 81–96.
[9] D. Enders, A. Saint-Dizier, M.I. Lannou, A. Lenzen, Eur. J. Org Chem. 2 (2006)
9–49.
[10] R.C. Miller, J.S. Bradley, L.A. Hamilton, J. Am. Chem. Soc. 78 (1956) 5299–5303.
[11] R. Bodalski, K. Pietrusiewicz, Tetrahedron Lett. 13 (1972) 4209–4212.
[12] D. Simoni, F.P. Invidiata, M. Manferdini, I. Lampronti, R. Rondanin, M. Roberti,
G.P. Pollini, Tetrahedron Lett. 39 (1998) 7615–7618.
[13] M. Hosseini-Sarvari, S. Etemad, Tetrahedron 64 (2008) 5519–5523.
[14] K. Green, Tetrahedron Lett. 30 (1989) 4807–4810.
[15] R.R. Hindersinn, R.S. Ludington, J. Org. Chem. 30 (1965) 4020–4025.
[16] Z. Jiang, Y. Zhang, W. Ye, C.-H. Tan, Tetrahedron Lett. 48 (2007) 51–54.
[17] M.O. Shulyupin, M.A. Kazankova, I.P. Beletskaya, Org. Lett. 4 (2002) 761–763.
[18] Q. Xu, L.-B. Han, Org. Lett. 8 (2006) 2099–2101.
Table 4
Comparison of the catalytic efficiency of NPS-␥-Fe2O3 with some catalysts.
Entry
Catalyst
Time (h)
Yielda (%)
1
2
3
4
5
NPS-␥-Fe2O3
HClO4-SiO2
AP-SiO2
H3PMo12O40
Sodium stearate
1
1
1
1
1
90
30
42
35
51
a
ononitrile (1 mmol), triethyl phosphite (1 mmol), 60 ◦C, solvent-free.
different in situ generated Michael acceptors and trialkyl phos-
phites (Scheme 3, Table 3).
[19] D. Semenzin, G. Etemad-Moghadam, D. Albouy, O. Diallo, M. Koenig, J. Org.
Chem. 62 (1997) 2414–2422.
[20] L.-B. Han, C.-Q. Zhao, J. Org. Chem. 70 (2005) 10121–10123.
[21] R.A. Stockland Jr., R.I. Taylor, L.E. Thompson, P.B. Patel, Org. Lett. 7 (2005)
851–853.
[22] M.R. Mahran, W.M. Abdou, Heteroatom chem. 3 (1992) 93–99.
[23] A.-H. Lu, E.L. Salabas, F. SchÜth, Angew. Chem. Int. Ed. 46 (2007) 1222–1244.
[24] J. Fan, Y. Gao, J. Exp. Nanosci. 45 (2006) 7–475.
[25] Y.-W. Jun, J.-S. Choi, J. Cheon, Chem. Commun. 120 (2007) 3–1214.
[26] D. Lee, J. Lee, H. Lee, S. Jin, T. Hyen, B.M. Kin, Adv. Synth. Catal. 348 (2006) 41–46.
[27] S. Ding, Y. Xing, M. Radosz, Y. Shen, Macromolecules 39 (2006) 6399–6405.
[28] Y. Zheng, P.D. Stevens, Y. Gao, J. Org. Chem. 71 (2006) 537–542.
[29] P.D. Stevens, G. Li, J. Fan, M. Yenand, Y. Gao, Chem. Commun. 443 (2005) 5–4437.
[30] C.Ó. Dálaigh, S.A. Corr, Y. Gunko, S.J. Connon, Angew. Chem. Int. Ed. 46 (2007)
4329–4332.
[31] M. Kawamura, K. Sato, Chem. Commun. 471 (2006) 8–4719.
[32] A. Hu, G.T. Yee, W. Lin, J. Am. Chem. Soc. 127 (2005) 12486–12487.
[33] L. Bromberg, T.A. Halton, Ind. Eng. Chem. Res. 44 (2005) 7991–7998.
[34] T.-J. Yoon, W. Lee, Y.-S. Oh, J.-K. Lee, New J. Chem. 27 (2003) 227–229.
[35] J.J. Smith, I. Zharov, Langmuir 24 (2008) 2650–2654.
[36] T. Koando, T. Kameshima, T. Kawai, Chem. Lett. 37 (2008) 828–829.
[37] B. Karimi, M. Khalkhali, J. Mol. Catal. A Chem. 271 (2007) 75–79.
[38] B. Karimi, M. Khalkhali, J. Mol. Catal. A Chem. 232 (2005) 113–117.
[39] H. Munakata, H. Chiba, K. Kanamura, Solid State Ionics 176 (2005) 2445–2450.
[40] T.G. Rymareva, V.B. Sandakov, B.A. Khaskin, V.K. Promonenkov, T.I. Koroleva,
Zh Obshch. Khim. 52 (1982) 220–221.
As it is shown in Table 3, the catalytic one-pot reaction of
4-chlorobenzaldehyde and malononitrile proceeded well with
trialkyl phosphites such as triethyl/trimethyl/tri-iso-propyl phos-
phite (entries 1–3). These results demonstrate that both the yields
and the reaction time are relatively independent of the phosphorus
compound. In addition to malononitrile, some other in situ gener-
ated Michael acceptors were also examinedto carry out the reaction
with triethyl phosphite (entries 4–6). The results showed that the
reaction involving ethyl cyano acetate worked well and the desired
product was obtained in 75% yield. However, no product was pro-
duced when diethyl malonate or nitromethane were used in this
in these reactions, we have performed one-pot reaction of ben-
zaldehyde, malononitrile and triethyl phosphite in the presence of a
catalytic amount of HClO4-SiO2, AP-SiO2, H3PMo12O40 and sodium
stearate (Table 4). As it is evident from Table 4, NPS-␥-Fe2O3 is the
most effective catalyst for this purpose, leading to the formation of
-phosphonomalonate (1) in a good yield.
[41] R. Massart, E. Dubois, V. Cabuil, E. Hasmonay, J. Magn. Magn. Mater. 149 (1995)
1–5.
[42] B.Z. Tang, Y. Geng, J.W.Y. Lam, B. Li, X. Jing, X. Wang, F. Wang, A.B. Pakhomov,
X.X. Zhang, Chem. Mater. 11 (1999) 1581–1589.
4. Conclusion
[43] S. Sobhani, Z. Pakdin Parizi, Tetrahedron 67 (2011) 3540–3545.
[44] S. Sobhani, S. Rezazadeh, Synlett (2010) 1485–1488.
[45] S. Sobhani, S. Rezazadeh, J. Iran. Chem. Soc. 8 (2011) 198–203.
[46] S. Sobhani, Z. Pakdin Parizi, S. Rezazadeh, J. Organomet. Chem. 696 (2011)
813–817.
[47] G. Lilia Ben, Z. Hedi, Phosphorus Sulfur Silicon Relat Elem. 157 (2000) 153–164.
[48] W.M. Abdou, M.D. Khidre, M.R. Mahran, J. Prakt. Chem. 332 (1990) 1029–1034.
[49] A.A. Fahmy, N.A. Ismail, T.S. Hafez, Phosphorus Sulfur Silicon Relat Elem. 66
(1992) 201–205.
In summary, NPS-␥-Fe2O3 as a new sulfonated nanomagnetic
iron oxide was synthesized directly through ring opening reac-
tion of 1,3-propanesultone with nano magnetic ␥-Fe2O3. The
synthesized NPS-␥-Fe2O3 was used as a magnetically recyclable
heterogeneous catalyst for the efficient one-pot synthesis of -
phosphonomalonates from the reaction of phosphite esters with