10.1002/chem.202002800
Chemistry - A European Journal
COMMUNICATION
5 mol% (dppp)NiCl2
[3]
a) C. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, Chem.
Soc. Rev. 2014, 43, 3525–3550; b) S. Bhunia, G. G. Pawar, V. Kumar,
Y. Jiang, D. Ma, Angew. Chem. Int. Ed. 2017, 56, 16136–16179; c) Q.
Cai, W. Zhou, Chin. J. Chem. 2020, 38, 879–893.
5 mol% dtbbpy
15 mol% Zn
HN
Br
N
MeO2S
MeO2S
1.5 equiv. t-BuTMG
[4]
[5]
a) S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299–
309; b) V. P. Ananikov, ACS. Catal. 2015, 5, 1964–1971.
2 mL DMSO, 80 ℃, 8 h
1.5 equiv.
91, 95% isolated yield
0.5 mmol
E. C. Hughes, F. Veatch, V. Elersich, Ind. Eng. Chem. 1950, 42, 787–
790.
NH2
1:1 1N HCl:THF (5 mL)
rt, 1 h
[6]
[7]
M. Marín, R. J. Rama, M. C. Nicasio, Chem. Rec. 2016, 16, 1819–1832.
a) J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 6054–6058;
b) B. H. Lipshutz, H. Ueda, Angew. Chem. Int. Ed. 2000, 39, 4492–4494;
c) T. Shimasaki, M. Tobisu, N. Chatani, Angew. Chem. Int. Ed. 2010, 49,
2929–2932; d) S. D. Ramgren, A. L. Silberstein, Y. Yang, N. K. Garg,
Angew. Chem. Int. Ed. 2011, 50, 2171–2173; e) N. H. Park, G.
Teverovskiy, S. L. Buchwald, Org. Lett. 2014, 16, 220–223; f) S. Ge, R.
A. Green, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 1617–1627; g) R.
A. Green, J. F. Hartwig, Angew. Chem. Int. Ed. 2015, 54, 3768–3772; h)
E. M. Wiensch, J. Montgomery, Angew. Chem. Int. Ed. 2018, 57, 11045–
11049.
MeO2S
92, 98% isolated yield
Scheme 4. Cross-Coupling of the Hydrolysable Amine Partner.
Finally, the practical application of our C–N coupling protocol
was demonstrated by the gram-scale synthesis of Quetiapine, a
medicine used to treat certain mental/mood conditions (Scheme
5). The coupling of 11-chlorodibenzo[b,f][1,4]thiazepine and 2-(2-
(piperazin-1-yl)ethoxy)ethan-1-ol efficiently furnished 1.15 g of
Quetiapine.
[8]
[9]
C. M. Lavoie, R. McDonald, E. R. Johnson, M. Stradiotto, Adv. Synth.
Catal. 2017, 359, 2972–2980.
a) C. M. Lavoie, P. M. MacQueen, N. L. Rotta-Loria, R. S. Sawatzky, A.
Borzenko, A. J. Chisholm, B. K. V. Hargreaves, R. McDonald, M. J.
Ferguson, M. Stradiotto, Nature Commun. 2016, 7, 11073; b) C. M.
Lavoie, M. Stradiotto, ACS. Catal. 2018, 8, 7228–7250; c) J. P. Tassone,
E. V. England, P. M. MacQueen, M. J. Ferguson, M. Stradiotto, Angew.
Chem. Int. Ed. 2019, 58, 2485–2489; d) J. S. K. Clark, M. J. Ferguson,
R. McDonald, M. Stradiotto, Angew. Chem. Int. Ed. 2019, 58, 6391–6395;
e) R. T. McGuire, J. F. J. Paffile, Y. Zhou, M. Stradiotto, ACS. Catal. 2019,
9, 9292–9297; f) R. T. McGuire, C. M. Simon, A. A. Yadav, M. J.
Ferguson, M. Stradiotto, Angew. Chem. Int. Ed. 2020, 59, 8952–8956.
OH
O
N
OH
5 mol% (dppp)NiCl2
5 mol% dtbbpy
15 mol% Zn
Cl
O
N
N
N
N
S
N
H
S
5 mol% additive 1
1.5 equiv. t-BuTMG
1.5 equiv.
1.15 g, 99% isolated yield
3 mmol
[10] a) E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. DiRocco, I. W.
Davies, S. L. Buchwald, D. W. C. MacMillan, Science 2016, 353, 279–
283; b) Z.-H. Qi, J. Ma, ACS. Catal. 2018, 8, 1456–1463; c) B. Y. Park,
M. T. Pirnot, S. L. Buchwald, J. Org. Chem. 2020, 85, 3234–3244.
[11] a) M. S. Oderinde, N. H. Jones, A. Juneau, M. Frenette, B. Aquila, S.
Tentarelli, D. W. Robbins, J. W. Johannes, Angew. Chem. Int. Ed. 2016,
55, 13219–13223; b) Y. Du, R. M. Pearson, C.-H. Lim, S. M. Sartor, M.
D. Ryan, H. Yang, N. H. Damrauer, G. M. Miyake, Chem. Eur. J. 2017,
23, 10962–10968; c) T. Kim, S. J. McCarver, C. Lee, D. W. C. MacMillan,
Angew. Chem. Int. Ed. 2018, 57, 3488–3492; d) C.-H. Lim, M. Kudisch,
B. Liu, G. M. Miyake, J. Am. Chem. Soc. 2018, 140, 7667–7673; e) M.
O. Konev, T. A. McTeague, J. W. Johannes, ACS. Catal. 2018, 8, 9120–
9124; f) Y.-Y. Liu, D. Liang, L.-Q. Lu, W.-J. Xiao, Chem. Commun. 2019,
55, 4853–4856; g) A. Wimmer, B. König, Org. Lett. 2019, 21, 2740–2744;
h) J. M. Blackburn, A. L. Gant Kanegusuku, G. E. Scott, J. L. Roizen, Org.
Lett. 2019, 21, 7049–7054; i) M. Kudisch, C.-H. Lim, P. Thordarson, G.
M. Miyake, J. Am. Chem. Soc. 2019, 141, 19479–19486.
Quetiapine
12 mL DMSO, 80 ℃, 8 h
Scheme 5. Gram-Scale Synthesis of Medicine Quetiapine.
In summary, we have developed a novel nickel-catalyzed
amination protocol featuring a simple Ni(II) precatalyst (1–5
mol%), an organic base (t-BuTMG) and catalytic amounts of a
pyridinium additive (5 mol%) and Zn metal (15 mol%). A diverse
of (hetero)aryl halides were coupled successfully with primary and
secondary alkyl amines, and anilines to furnish the corresponding
amination products in good to excellent yields. Generally,
moderate to high promoting effect of catalytic pyridinium additive
was observed on the Ni-catalyzed C–N coupling reaction. Further
exploration into the reaction mechanism is undergoing in our lab.
[12] a) C. Li, Y. Kawamata, H. Nakamura, J. C. Vantourout, Z. Liu, Q. Hou, D.
Bao, J. T. Starr, J. Chen, M. Yan, P. S. Baran, Angew. Chem. Int. Ed.
2017, 56, 13088–13093; b) Y. Kawamata, J. C. Vantourout, D. P. Hickey,
P. Bai, L. Chen, Q. Hou, W. Qiao, K. Barman, M. A. Edwards, A. F.
Garrido-Castro, J. N. deGruyter, H. Nakamura, K. Knouse, C. Qin, K. J.
Clay, D. Bao, C. Li, J. T. Starr, C. Garcia-Irizarry, N. Sach, H. S. White,
M. Neurock, S. D. Minteer, P. S. Baran, J. Am. Chem. Soc. 2019, 141,
6392–6402.
Acknowledgements
Financial support was provided by Natural Science Foundation of
Shanghai (19ZR1468700), CAS Key Laboratory of Synthetic
Chemistry of Natural Substances, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences.
[13] a) J. B. Diccianni, T. Diao, Trends Chem. 2019, 1, 830–844; b) J.
Diccianni, Q. Lin, T. Diao, Acc. Chem. Res. 2020, 53, 906–919.
[14] During the preparation of this manuscript, a related paper was published:
R. Sun, Y. Qin, D. G. Nocera, Angew. Chem. Int. Ed. 2020, 59, 9527–
9533.
Keywords: nickel-catalyzed • amination • C–N coupling • aryl
halides • anilines
[15] a) J. M. Dennis, N. A. White, R. Y. Liu, S. L. Buchwald, ACS. Catal. 2019,
9, 3822–3830; b) R. Y. Liu, J. M. Dennis, S. L. Buchwald, J. Am. Chem.
Soc. 2020, 142, 4500–4507.
[1]
[2]
D. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443–4458.
a) J. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534–1544; b) P. Ruiz-
Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564–12649; c) P. A.
Forero-Cortés, A. M. Haydl, Org. Process Res. Dev. 2019, 23, 1478–
1483; d) R. Dorel, C. P. Grugel, A. M. Haydl, Angew. Chem. Int. Ed. 2019,
58, 17118–17129.
[16] a) K. Y. Lee, J. K. Kochi, J. Chem. Soc. Perkin Trans. 2 1990, 55, 4127–
4135; b) E. B. Cole, P. S. Lakkaraju, D. M. Rampulla, A. J. Morris, E.
Abelev, A. B. Bocarsly, J. Am. Chem. Soc. 2010, 132, 11539–11551; c)
G.-J. Zhang, X. Gan, Q.-Q. Xu, Y. Chen, X.-J. Zhao, B. Qin, X.-J. Lv, S.-
W. Lai, W.-F. Fu, C.-M. Che, Dalton Trans. 2012, 41, 8421–8429.
6
This article is protected by copyright. All rights reserved.