pubs.acs.org/joc
quaternary-tertiary stereocenters is still one of the most
Chiral Amine Thiourea-Promoted Enantioselective
Michael Addition Reactions of 3-Substituted
Benzofuran-2(3H)-ones to Maleimides
difficult challenges in asymmetric catalysis,2 in which the
whole catalysis is a tandem conjugate addition-protonation
process with simultaneous control of two stereocenters.
Over the past 10 years, significant efforts have been directed
toward to the development of asymmetrically synthetic method-
ology for this challenging area.3,4 In a particularly valuable
context, conjugate addition of 3-substituted oxindoles to ap-
propriate electrophiles promoted by organocatalysts provides
a very straightforward approach to access oxindole-type deriv-
atives bearing two adjacent quaternary-tertiary stereocenters,4
whose structural motifs are ubiquitous in a wide range of
biologically and pharmaceutically active natural alkaloids.5
However, the 3-substituted benzofuran-2(3H)-ones, whose
structures are very similar to the 3-substituted oxindoles, have
been rarely considered as nuclephiles in asymmetric catalysis. It
should be pointed out that the conjugate addition products
by such a process use 3-substituted benzofuran-2(3H)-ones
as nucleophiles, which have quarternary chiral centers at
the C3-position of benzofuran-2(3H)-ones, would serve as
key structural motifs that are ubiquitous in a number of
biologically active heterocyclic compounds (Figure 1), such
as radulifolin,6 3-hydroxycacalolide,7 daphnodorins A-F,8
Xin Li,*,† Shenshen Hu,‡ Zhiguo Xi,† Long Zhang,‡
Sanzhong Luo,*,‡ and Jin-Pei Cheng*,†
†Department of Chemistry and State Key Laboratory of
Elemento-organic Chemistry, Nankai University,
Tianjin 300071, China, and ‡Beijing National Laboratory for
Molecular Sciences, CAS Key Laboratory of Molecular
Recognition and Function, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
xin_li@nankai.edu.cn; luosz@iccas.ac.cn; chengjp@most.cn
Received September 22, 2010
(2) For adjacent quaternary-tertiary stereocenters, see: (a) Bella, M.;
Gasperi, T. Synthesis 2009, 1583. (b) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu,
X.; Guo, C.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105.
(c) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
5363. (d) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 11204.
(3) For selected examples of related stereoselective construction of vicinal
quaternary-tertiary carbon centers, see: (a) Trost, B. M.; Zhang, Y.
A highly diastereo- and enantioselective Michael addition
reaction with respect to prochiral 3-substituted benzofuran-
2(3H)-ones and maleimides by a chiral bifunctional
thiourea-tertiary amine catalyst was investigated. The
corresponding adducts, containing a quaternary center at
the C3-position of the benzofuran-2(3H)-one as well as a
vicinal tertiary center, were generally obtained in high
yields (up to 99%) with very good diastereo- (up to >20:1 dr)
and enantioselectivities (up to 97% ee).
Chem. Eur. J. 2010, 16, 296. (b) Wu, F.; Hong, R.; Khan, J.; Liu, X.;
;
Deng, L. Angew. Chem., Int. Ed. 2006, 45, 4301. (c) Wu, F.; Li, H.; Hong, R.;
Deng, L. Angew. Chem., Int. Ed. 2006, 45, 947. (d) Lalonde, M. P.; Chen, Y.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366. (e) Poulsen, T. B.;
Alemparte, C.; Saaby, S.; Bella, M.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2005, 44, 2896. (f) Austin, J. F.; Kim, S.-G.; Sinz, C. J.; Xiao, W.-J.;
MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482.
(4) (a)Zhou,F.;Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381. For
selected examples of catalytic asymmetric synthesis of oxindoles with quaternary
carbon stereocenters, see: (b) Ding, M.; Zhou, F.; Qian, Z. -Q.; Zhou, J. Org.
Biomol. Chem. 2010, 8, 2912. (c) Kato, Y.; Furutachi, M.; Chen, Z.; Mitsunuma,
H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 9168. (d) He,
R. J.; Shirakawa, S.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 16620. (e) Bui,
T.; Syed, S.; Barbas, C. F., III. J. Am. Chem. Soc. 2009, 131, 8758. (f) Galzerano,
P.; Bencivenni, G.; Pesciaioli, F.; Mazzanti, A.; Giannichi, B.; Sambri, L.;
Bartoli, G.; Melchiorre, P. Chem. Eur. J. 2009, 15, 7846. (g) Cheng, L.; Liu,
;
L.; Jia, H.; Wang, D.; Chen, Y. -J. J. Org. Chem. 2009, 74, 4650.
(5) For reviews, see: (a) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003,
103, 2945. (b) Lin, H.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 36.
(c) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
Other selected examples: (d) Zhang, X.; Smith, C. D. Mol. Pharmacol. 1996,
49, 228. (e) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 4083.
(f) Wearing, X. Z.; Cook, J. M. Org. Lett. 2002, 4, 4237. (g) Albrecht, B. K.;
Williams, R. M. Org. Lett. 2003, 5, 197. (h) Abadi, A. H.; Abou-Seri, S. M.;
Abdel-Rahman, D. E.; Klein, C.; Lozach, O.; Meijer, L. Eur. J. Med. Chem.
2006, 41, 296. (i) Reisman, S. E.; Ready, J. M.; Weiss, M. M.; Hasuoka, A.;
Hirata, M.; Tamaki, K.; Ovaska, T. V.; Smith, C. J.; Wood, J. L. J. Am.
Chem. Soc. 2008, 130, 2087.
Asymmetric conjugate addition reactions with carbon
nucleophiles, which is one of the most powerful and versatile
processes for the formation of C-C bonds in organic synthe-
sis, have been successfully used in creating molecular com-
plexity with high stereocontrol.1 As a result, a wide variety of
compounds that can serve as electrophiles and nucleophiles
and, consequently, a diverse array of products can be gener-
ated with versatile structures by rational design. Despite
many notable advances in this arena, an efficient and stereo-
selective conjugate addition reaction that generates adjacent
(6) Ramı0rez, M. L. G.; Trejo, A.; Navarro, V.; Bye, R.; Linares, E.;
Delgado, G. J. Nat. Prod. 2001, 64, 432.
(7) Inman, W. D.; Luo, J.; Jolad, S. D.; King, S. R.; Cooper, R. J. Nat.
Prod. 1999, 62, 1088.
(1) For recent reviews of organocatalyzed conjugate addition reactions,
see: (a) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178.
(b) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.;
Feringa, B. L. Chem. Rev. 2008, 108, 2824. (c) Alexakis, A.; Backvall,
J. E.; Krause, N.; Pamies, O.; Dieguez, M. Chem. Rev. 2008, 108, 2796.
(d) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701. (e) Almasi, D.; Alonso,
D. A.; Najera, C. Tetrahedron: Asymmetry 2007, 18, 299. (f) Taylor, M. S.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
(8) (a) Baba, K.; Takeuchi, K.; Doi, M.; Inoue, M.; Kozawa, M. Chem.
Pharm. Bull 1986, 34, 1540. (b) Baba, K.; Takeuchi, K.; Doi, M.; Kozawa, M.
Tennen Yuki Kagobutsu Toronkai Koen Yoshihu 1987, 29, 668. (c) Takai, S.;
Sakaguchi, M.; Jin, D.; Baba, K.; Miyazaki, M. Life Sciences 1999, 64, 1889.
(d) Sakuma, S.; Fujimoto, Y.; Tsunomon, M.; Tagano, S.; Nishida, H.;
Baba, K.; Fujita, T. Prostaglandins, Leukotrienes Essent. Fatty Acids 1998,
58, 143.
DOI: 10.1021/jo101832e
r
Published on Web 11/24/2010
J. Org. Chem. 2010, 75, 8697–8700 8697
2010 American Chemical Society