Inorganic Chemistry
Article
(20) Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory
Chemicals, 4th ed.; Butterworth Heinemann: Oxford; Boston, 1997; p
413.
(21) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.;
Assour, J.; Korsakoff, L. J. Org. Chem. 1967, 32, 476.
ACKNOWLEDGMENTS
■
We thank Dr. Allen G. Oliver for assistance with orientations
for the single-crystal experiments. Research reported in this
publication was supported by the National Institute of General
Medical Sciences of the National Institutes of Health under
award number R01GM-038401 to W.R.S. We also thank the
NSF for support under CHE-1026369 to J.T.S. and support
from the CAS Hundred Talent Program starting grant of UCAS
to J.F.L. Use of the Advanced Photon Source, an Office of
Science User Facility operated for the U.S. Department of
Energy (DOE) Office of Science by Argonne National
Laboratory, was supported by the U.S. DOE under Contract
No. DE-AC02-06CH11357.
(22) Landergren, M.; Baltzer, L. Inorg. Chem. 1990, 29, 556.
(23) (a) Fleischer, E. B.; Srivastava, T. S. J. Am. Chem. Soc. 1969, 91,
2403. (b) Hoffman, A. B.; Collins, D. M.; Day, V. W.; Fleischer, E. B.;
Srivastava, T. S.; Hoard, J. L. J. Am. Chem. Soc. 1972, 94, 3620.
(24) Pavlik, J. W.; Barabanchikov, A.; Oliver, A. G.; Alp, E. E.;
Sturhahn, W.; Zhao, J.; Sage, J. T.; Scheidt, W. R. Angew. Chem., Int.
Ed. 2010, 49, 4400.
(25) There are four independent porphyrin molecules in the unit cell,
and each of the two are in same orientation. The dihedral angle
between the two nonparallel porphyrin planes is 15.9° (SI) (see ref 1).
A pseudoporphyrin plane was generated to orientate the single crystal
for ip and oop enhanced measurements. Thus, in an oop measure-
ment, a certain amount of iron ip vectors can be observed. However in
an ip measurement, oop iron motions can be avoided with the right
orientation. This is illustrated in the SI.
REFERENCES
■
(1) Li, J.; Lord, R. L.; Noll, B. C.; Baik, M.-H.; Schulz, C. E.; Scheidt,
W. R. Angew. Chem., Int. Ed. 2008, 47, 10144.
(2) Abbreviations: NRVS, nuclear resonance vibrational spectrosco-
py; oop, out-of-plane; ip, in-plane; Porph, generalized porphyrin
dianion; TPP, dianion of meso-tetraphenylporphyrin; OEP, dianion of
2,3,7,8,12,13,17,18-octaethylporphyrin; THF, tetrahydrofuran; Kryp-
tofix-222 or 222, 4,7,13,16,21,24-hexaoxo-1,10-diazabicyclo[8.8.8]
hexacosane; phen, phenanthroline; VDOS, vibrational density of
states; KED, vibrational kinetic energy distributions.
(26) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
(27) Leu, B.; Zgierski, M.; Wyllie, G. R. A.; Scheidt, W. R.; Sturhahn,
W.; Alp, E. E.; Durbin, S. M.; Sage, J. T. J. Am. Chem. Soc. 2004, 126,
4211.
(28) Hu, C.; Barabanschikov, A.; Ellison, M. K.; Zhao, J.; Alp, E. E.;
Sturhahn, W.; Zgierski, M. Z.; Sage, J. T.; Scheidt, W. R. Inorg. Chem.
2012, 51, 1359.
(3) The unexpectedly lower ligand field strength of cyanide in this
complex has been highlighted: Nakamura, M. Angew. Chem., Int. Ed.
2009, 48, 2.
(4) The data previously reported in ref 1 are incompatible with a
quantum-admixed spin state that has been reported for five-coordinate
iron(III) derivatives.5
(5) Reed, C. A.; Mashiko, T.; Bentley, S. P.; Kastner, M. E.; Scheidt,
W. R.; Spartalian, K.; Lang, G. J. Am. Chem. Soc. 1979, 101, 2948.
(6) Hill, H. A. O.; Skyte, P. D.; Buchler, J. W.; Lueken, H.; Tonn, M.;
Gregson, A. K.; Pellizer, G. J. Chem. Commun. 1979, 151.
(7) Scheidt, W. R.; Geiger, D. K.; Haller, K. J. J. Am. Chem. Soc. 1982,
104, 495.
(8) Geiger, D. K.; Chunplang, V.; Scheidt, W. R. Inorg. Chem. 1985,
24, 4736.
(9) Ellison, M. K.; Nasri, H.; Xia, Y.-M.; Marchon, J.-C.; Schulz, C.
E.; Debrunner, P. G.; Scheidt, W. R. Inorg. Chem. 1997, 36, 4804.
(10) Ohgo, Y.; Ikeue, T.; Takahashi, M.; Takeda, M.; Nakamura, M.
Eur. J. Inorg. Chem. 2004, 798.
(29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. ; Scuseria, G. E.;
Robb, M. A.; . Cheeseman, J. R; Montgomery, J. A., Jr.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G. ; Rega, N. ;
Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M; Toyota,K. ;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M. ; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J.
B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.
E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J.
J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D. ; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I. ;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,
W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, Revision
D.01; Gaussian, Inc.: Wallingford, CT, 2004.
(11) Ohgo, Y.; Ikeue, T.; Nakamura, M. Inorg. Chem. 2002, 41, 1698.
(30) (a) Becke, A. D. Phys. Rev. 1988, A38, 3098. (b) Becke, A. D. J.
Chem. Phys. 1993, 98, 1372. (c) J. Chem. Phys. 5648. (d) Lee, C.;
Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
(12) (a) Gutlich, P., Goodwin, H. A., Eds. Top. Curr. Chem. 2004,
̈
233−235. (b) Gutlich, P.; Koningsbruggen, P. J.; van; Renz, F. Struct.
̈
Bonding (Berlin) 2004, 107, 27.
(31) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani,G.; Barone, V.; Mennucci, B.;
Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;
Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima,T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.;
Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi,
R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar,
S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J.
E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.
D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.
Gaussian09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009.
(32) Although the primary reason for the current computational
studies was to obtain vibrational prediction, we can note that the
calculated energies (at a nominal temperature of 300 K) shows the
high-spin state to have a slightly lower energy. The value of the
electronic energy plus the zero-point energy was −3268.66712 hartree
(13) Tuchagues, J.-P.; Bousseksou, A.; Molnar, G.; McGarvey, J. J.;
Varret, F. Top. Curr. Chem. 2004, 235, 85.
(14) (a) Winkler, H.; Chumakov, A. I.; Trautwein, A. X. Top. Curr.
Chem. 2004, 235, 137. (b) Paulsen, H.; Trautwein, A. X. Top. Curr.
Chem. 2004, 235, 197.
(15) (a) Takemoto, J. H.; Hutchinson, B. Inorg. Chem. 1973, 121,
705. (b) Takemoto, J. H.; Streusand, B.; Hutchinson, B. Spectrochim.
Acta 1974, 30, 827.
(16) Scheidt, W. R.; Durbin, S. M.; Sage, J. T. J. Inorg. Biochem. 2005,
99, 60.
(17) Sage, J. T.; Paxson, C.; Wyllie, G. R. A.; Sturhahn, W.; Durbin, S.
M.; Champion, P.; M.; Alp, E. E.; Scheidt, W. R. J. Phys.: Condens.
Matter. 2001, 13, 7707.
(18) (a) Leu, B. M.; Silvernail, N. J.; Zgierski, M. Z.; Wyllie, G. R. A.;
Ellison, M. K.; Scheidt, W. R.; Zhao, J.; Sturhahn, W.; Alp, E. E.; Sage,
J. T. Biophys. J. 2007, 92, 3764. (b) Rai, B. K.; Durbin, S. M.;
Prohofsky, E. W.; Sage, J. T.; Ellison, M. K.; Roth, A.; Scheidt, W. R.;
Sturhahn, W.; Alp, E. E. J. Am. Chem. Soc. 2003, 125, 6927.
(19) Wolny, J. A.; Diller, R.; Schunemann, V. Eur. J. Inorg. Chem.
̈
2012, 2635.
11777
dx.doi.org/10.1021/ic301719v | Inorg. Chem. 2012, 51, 11769−11778