ChemComm
Communication
Fig. 3 Histogram showing selectivity of BDAA (10 mM) for Hg2+ in HEPES buffer
(50 mM, containing 0.1 M KNO3, pH = 7.4) solution. The pillars in the front row
from left represent the I/I0 value in the presence of various metal ions (5 equiv.).
The pillars in the back row from left indicate the change in the emission intensity
upon subsequent addition of Hg2+ (3 equiv.) to the solution containing BDAA
and the metal ions of interest. For all measurements, lex = 430 nm; T = 298 K.
Excitation and emission slit widths were 3 and 6 nm, respectively.
Fig. 4 Confocal fluorescence images of live HT-29 cells. (a) Cells incubated
with 10 mM BDAA for 30 min. (b) Cells incubated with 30 mM Hg2+ for 30 min,
washed two times, and then further incubated with BDAA for 30 min.
sciences, with great potential to produce new structure fluores-
cence sensor devices.
This study was supported by the National Basic Research
state upon the chelating of Hg2+ with one of the hydroxyl groups, azo 973 Program of China (2011CB932302 and 2012CB932901) and
group, one of the alkyne bonds and the amino group next to the azo the National Natural Science Foundation of China (201031006
group (Scheme 1). Further corroborative evidence for the mercury and 91227113).
complex was observed in the MALDI-TOF mass spectrum which
showed a mass peak corresponding to [BDAA + Hg(ClO4)2Á3H2O +
Notes and references
1 (a) H. N. Kim, W. X. Ren, J. S. Kim and J. Yoon, Chem. Soc. Rev., 2012,
41, 3210; (b) M. H. Lee, Z. Yang, C. W. Lim, Y. H. Lee, S. Dongbang,
C. Kang and J. S. Kim, Chem. Rev., 2013, 113, 5071.
2 (a) X. R. He, H. B. Liu, Y. L. Li, S. Wang, Y. J. Li, N. Wang, J. C. Xiao,
X. H. Xu and D. B. Zhu, Adv. Mater., 2005, 17, 2811; (b) E. M. Nolan
and S. J. Lippard, Chem. Rev., 2008, 108, 3443; (c) G. Aragay, J. Pons
and A. Merkoci, Chem. Rev., 2011, 111, 3433; (d) J. Y. Jung, M. Kang,
J. Chun, J. Lee, J. Kim, J. Kim, Y. Kim, S. J. Kim, C. Lee and J. Yoon,
Chem. Commun., 2013, 49, 176.
3 (a) H. H. Harris, I. J. Pickering and G. N. George, Science, 2003, 301, 1203;
(b) I. Onyido, A. R. Norris and E. Buncel, Chem. Rev., 2004, 104, 5911.
4 P. B. Tchounwou, W. K. Ayensu, N. Ninashvili and D. Sutton,
Environ. Toxicol., 2003, 18, 149.
5 (a) M. J. Yuan, Y. L. Li, J. B. Li, C. H. Li, X. F. Liu, J. Lv, J. L. Xu,
H. B. Liu, S. Wang and D. B. Zhu, Org. Lett., 2007, 9, 2313; (b) X. Liu,
Y. Tang, L. Wang, J. Zhang, S. Song, C. Fan and S. Wang, Adv. Mater.,
2007, 19, 1471; (c) M. Zhu, M. J. Yuan, X. F. Liu, J. L. Xu, J. Lv,
C. S. Huang, H. B. Liu, Y. L. Li, S. Wang and D. B. Zhu, Org. Lett.,
2008, 10, 1481; (d) N. Dave, M. Y. Chan, P. J. J. Huang, B. D. Smith
and J. W. Liu, J. Am. Chem. Soc., 2010, 132, 12668; (e) J. J. Du,
J. L. Fan, X. J. Peng, P. P. Sun, J. Y. Wang, H. L. Li and S. G. Sun, Org.
Lett., 2010, 12, 476; ( f ) Z. Guo, W. H. Zhu, M. M. Zhu, X. M. Wu and
H. Tian, Chem.–Eur. J., 2010, 16, 14424; (g) Y. C. Chen, C. C. Zhu,
Z. H. Yang, J. Li, Y. Jiao, W. J. He, J. J. Chen and Z. J. Guo, Chem.
Commun., 2012, 48, 5094; (h) J. K. Choi, G. Sargsyan, A. M. Olive and
M. Balaz, Chem.–Eur. J., 2013, 19, 2515; (i) A. K. Atta, S. B. Kim, J. Heo
and D. G. Cho, Org. Lett., 2013, 15, 1072; ( j) J. Zheng, Y. Nie, Y. Hu,
J. Li, Y. Li, Y. Jiang and R. Yang, Chem. Commun., 2013, 49, 6915.
6 (a) F. L. Song, S. Watanabe, P. E. Floreancig and K. Koide, J. Am.
Chem. Soc., 2008, 130, 16460; (b) H. Y. Lee, J. Jo, H. Park and D. Lee,
Chem. Commun., 2011, 47, 5515; (c) J. Jo, H. Y. Lee, W. Liu, A. Olasz,
C. H. Chen and D. Lee, J. Am. Chem. Soc., 2012, 134, 16000.
7 H. M. Kim, M. S. Seo, M. J. An, J. H. Hong, Y. S. Tian, J. H. Choi,
O. Kwon, K. J. Lee and B. R. Cho, Angew. Chem., Int. Ed., 2008, 47, 5167.
8 H. Y. Lee, X. L. Song, H. Park, M. H. Baik and D. Lee, J. Am. Chem.
Soc., 2010, 132, 12133.
2Na+–H+]+ at m/z 931.3 (Fig. S16, ESI†).
The specificity of the sensor BDAA toward Hg2+ was determined
by fluorescence screening. Nearly no fluorescence intensity changes
were observed in emission spectra with various metal ions (Fig. 3) as
À
well as anions such as ClO4À, CO32À, SO42À, FÀ, ClÀ, BrÀ, H2PO4
and AcÀ (Fig. S17, ESI†). However, under identical conditions,
fluorescence intensity was enhanced significantly in the presence
of Hg2+. When 3 equivalents of Hg2+ were added into the solution
of BDAA in the presence of 5 equivalents of other metal ions
(10 equivalents of anions), the emission spectra displayed a similar
pattern at near 525 nm to that with Hg2+ ions only, whereas Fe3+ and
Ni2+ slightly quenched the fluorescence. These results clearly demon-
strated that the BDAA sensor was highly specific for Hg2+ ions.
To further demonstrate the practical application of the BDAA,
fluorescence imaging for Hg2+ was carried out in living cells using
scanning confocal microscopy (Fig. 4). HT-29 cells were incubated
with 10 mM of BDAA and 30 mM of Hg2+ ions (Fig. S18, ESI†) for
30 min at 37 1C, respectively. Both of them did not show intra-
cellular fluorescence. However, after the addition of Hg2+ (30 mM),
cells stained with BDAA were incubated for another 0.5 h, a marked
increase in intracellular fluorescence was observed. These experi-
ments indicated that BDAA is cell permeable and can respond to
Hg2+ ions within living cells.
In summary, we have demonstrated a new strategy to direct
detection of Hg2+ in aqueous solution and living cells which
achieved ‘‘off’’ to ‘‘on’’ switchable fluorescence. The fluorescence
intensity of the unusual sensor was significantly enhanced about
168-fold. Such a fluorescence sensor of the new structure expanded
the functionality of the system, which revealed that the fluorescence
9 Y. H. Liu, G. J. Zhao, G. Y. Li and K. L. Han, J. Photochem.
Photobiol., A, 2010, 209, 181.
output can be modulated from ‘‘off’’ to ‘‘on’’ in response to imaging 10 J. Zhang, A. Shibata, M. Ito, S. Shuto, Y. Ito, B. Mannervik, H. Abe
of Hg2+ in living cells with little background interference. We believe
that the unusual fluorescence sensor might have applicability
and R. Morgenstern, J. Am. Chem. Soc., 2011, 133, 14109.
11 J. Lv, L. Jiang, C. H. Li, X. F. Liu, M. J. Yuan, J. L. Xu, W. D. Zhou,
Y. L. Song, H. H. Liu, Y. L. Li and D. B. Zhu, Langmuir, 2008,
for fundamental research and applications in the field of living
24, 8297.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 2055--2057 | 2057