a variety of substituents at C-2. In addition, the usefulness of
these 4-haloindoles produced by this chemistry as intermediates
for further transformations has been briefly outlined, including
reactions that afford 2,4- and 2,3,4-functionalized indoles.
Acknowledgements
We gratefully thank Junta de Castilla y Leo´n (BU021A09 and GR-
172) and Ministerio de Educacio´n y Ciencia (MEC) and FEDER
(CTQ2007-61436/BQU) for financial support. V. G. thanks MEC
for a predoctoral FPU fellowship.
Notes and references
1 R. J. Sundberg, Indoles, Academic Press: San Diego, 1996.
2 (a) S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873–2920; (b) G. R.
Humphrey and J. T. Kuethe, Chem. Rev., 2006, 106, 2875–2911; (c) J.
Barluenga, F. Rodr´ıguez and F. J. Fan˜ana´s, Chem.–Asian J., 2009, 4,
1036–1048.
3 (a) M. Somei, F. Yamada, M. Kunimoto and C. Kaneko, Heterocycles,
1984, 22, 797–801; (b) P. Wipf and F. Yokokawa, Tetrahedron Lett.,
1998, 39, 2223–2226.
4 M. A. Brown and M. A. Kerr, Tetrahedron Lett., 2001, 42, 983–985.
5 (a) M. Iwao, Heterocycles, 1993, 36, 29–32; (b) B. Chauder, A. Larkin
and V. Snieckus, Org. Lett., 2002, 4, 815–817.
6 J. Chae and S. L. Buchwald, J. Org. Chem., 2004, 69, 3336–3339.
7 L. Li and A. Martins, Tetrahedron Lett., 2003, 44, 5987–5990.
8 D. F. Taber and W. Tian, J. Am. Chem. Soc., 2006, 128, 1058–1059.
9 R. Sanz, J. Escribano, M. R. Pedrosa, R. Aguado and F. J. Arna´iz, Adv.
Synth. Catal., 2007, 349, 713–718.
10 J. Barluenga, A. Jime´nez-Aquino, F. Aznar and C. Valde´s, J. Am. Chem.
Soc., 2009, 131, 4031–4041.
11 See, for instance: (a) J. H. Tidwell and S. L. Buchwald, J. Am. Chem.
Soc., 1994, 116, 11797–11810; (b) B. C. So¨derberg and J. A. Shriver,
J. Org. Chem., 1997, 62, 5838–5845; (c) J. Barluenga, F. J. Fan˜ana´s, R.
Sanz and Y. Ferna´ndez, Chem.–Eur. J., 2002, 8, 2034–2046.
12 Only 3-bromo-2-iodoaniline has been described by reduction of 3-
bromo-2-iodonitrobenzene, which is prepared by diazotation and
iodide displacement from 2-bromo-6-nitroaniline. See: (a) J. F. Corbett
and J. F. Holt, J. Chem. Soc., 1961, 5029–5037; (b) M. Lemaire, A. Guy,
P. Boutin and J. P. Guette, Synthesis, 1989, 761–763.
13 (a) R. Sanz, M. P. Castroviejo, Y. Ferna´ndez and F. J. Fan˜ana´s, J. Org.
Chem., 2005, 70, 6548–6551; (b) R. Sanz, M. P. Castroviejo, V. Guilarte,
A. Pe´rez and F. J. Fan˜ana´s, J. Org. Chem., 2007, 72, 5113–5118.
14 J. F. Bunnett and R. E. Zahler, Chem. Rev., 1951, 49, 273–412.
15 B. McKittrick, A. Failli, R. J. Steffan, R. M. Soll, P. Hughes, J. Schmid,
A. A. Asselin, C. C. Shaw, R. Noureldin and G. Gavin, J. Heterocycl.
Chem., 1990, 27, 2151–2163.
Scheme 5 Synthetic applications of 4-haloindoles.
2-(tributylstannyl)furan,29 affording 4-(2-furanyl)indole 13 in high
yield (eqn (1)). On the other hand, 2,4-diphenylindole 14 and 4-
alkynylindole derivative 15 are readily accessible from 4-bromo-
1H-indole 12a by Suzuki and Sonogashira cross-coupling re-
actions, respectively, under standard Pd-catalysis (eqn (2) and
(3)).30 Besides Pd-catalyzed processes, by applying our recently
developed allenylation of 2-arylindoles with tertiary propargylic
alcohols,31 3-dienylindole 16 was obtained in high yield (eqn (4)). It
was also possible to synthesize a 3-arylthio-4-halo-2-substituted-
1H-indole like 17 by introduction of the arylthio group at C-3
under the basic conditions required for the cyclization step (eqn
(5)).32
16 H. A. Oskooie, M. M. Heravi and F. K. Behbahani, Molecules, 2007, 12,
1438–1446. For a review, see: M. M. Heravi and S. Sadjadi, Tetrahedron,
2009, 65, 7761–7775.
17 Different reaction conditions and N-activating groups were tested
without positive results.
18 (a) R. D. Clark and J. M. Caroon, J. Org. Chem., 1982, 47,
2804–2806; (b) D. R. Reavill and S. K. Richardson, Synth. Commun.,
1990, 20, 1423–1426; (c) S. Takagishi, G. Katsoulos and M. Schlosser,
Synlett, 1992, 360–362.
19 H. T. Bucherer, J. Prakt. Chem., 1904, 69, 49–91.
20 R. A. Rossi and J. F. Bunnett, J. Org. Chem., 1972, 37, 3570.
21 R. A. Scherrer and H. R. Beatty, J. Org. Chem., 1972, 37,
1681–1686.
22 See, for instance: (a) T. Ogata and J. F. Hartwig, J. Am. Chem. Soc.,
2008, 130, 13848–13849; (b) J. F. Hartwig, Acc. Chem. Res., 2008, 41,
1534–1544; (c) C. M. So, Z. Zhou, C. P. Lau and F. Y. Kwong, Angew.
Chem., Int. Ed., 2008, 47, 6402–6406.
23 See, for instance: (a) I. G. C. Coutts and M. R. Southcott, J. Chem.
Soc., Perkin Trans. 1, 1990, 767–771; (b) C. Bonini, M. Funicello, R.
Scialpi and P. Spagnolo, Tetrahedron, 2003, 59, 7515–7520; (c) L. El
Ka¨ım, L. Grimaud and J. Oble, Angew. Chem., Int. Ed., 2005, 44,
7961–7964; (d) C. Bonini, G. Cristiani, M. Funicello and L. Viggiani,
Synth. Commun., 2006, 36, 1983–1990; (e) O.-I. Patriciu, A.-L. Finaru,
In summary, we have developed an efficient route to 4-halo-
1H-indoles from 3-halo-2-iodophenol derivatives using the Smiles
rearrangement and a NaOH-mediated cyclization as the key steps.
3-Halo-2-iodoanilides were obtained in high yields from O-3-halo-
2-iodophenyl N,N-diethylcarbamates or 3-halo-2-iodoanisoles
without any chromatographic purification. Their subsequent
coupling with terminal alkynes and cyclization under treatment
with NaOH allow the access to challenging 4-haloindoles with
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 3860–3864 | 3863
©