4542
W. Chang et al. / Bioorg. Med. Chem. Lett. 20 (2010) 4539–4543
concentrations up to 50 l
M. Even in the case of the 20-difluoro
Supplementary data
derivative 6 which is an analog of the highly cytotoxic nucleoside
Gemcitabine (11) no cytotoxicity was observed.23
Spectral data for all new 3’,4’-oxetane nucleosides are provided.
Details on NS5B RNA polymerase assays are given. Supplementary
data associated with this article can be found, in the online version,
Since nucleosides must be anabolized to their triphosphate
derivative in order to inhibit the HCV RdRp, it is possible that the
lack of activity exhibited by these oxetane nucleosides may be as
a result of their inability to be phosphorylated by cellular kinases
in the phosphorylation cascade. To investigate this possibility, we
prepared the triphosphates of three 30,40-oxetane nucleosides
(4-TP, 5-TP, and 6-TP).24 These triphosphates were shown to inhi-
References and notes
1. World Health Organization fact sheet number 164, October 2000.
2. Lavanchy, D. Liver Int. 2009, 29, 74.
3. Zeuzem, S.; Berg, T.; Moeller, B.; Hinrichsen, H.; Mauss, S.; Wedemeyer, H.;
Sarrazin, C.; Hueppe, D.; Zehnter, E.; Manns, M. P. J. Viral. Hepat. 2009, 16, 75.
4. Neukam, K.; Macias, J.; Mira, J. A.; Pineda, J. A. Expert Opin. Pharmacother. 2009,
10, 417.
5. Kato, N.; Nakamura, T.; Dansako, H.; Namba, K.; Abe, K.; Nozaki, A.; Naka, K.;
Ikeda, M.; Shimotohno, K. J. Gen. Virol. 2005, 86, 645.
6. (a) Furman, P. A.; Lam, A. M.; Murakami, E. Future Med. Chem. 2009, 1, 1429; (b)
Kwong, A. D.; McNair, L.; Jacobson, I.; George, S. Curr. Opin. Pharmacol. 2008, 8,
522.
7. Clark, J. L.; Hollecker, L.; Mason, J. C.; Stuyver, L. J.; Tharnish, P. M.; Lostia, S.;
McBrayer, T. R.; Schinazi, R. F.; Watanabe, K. A.; Otto, M. J.; Furman, P. A.; Stec,
W. J.; Patterson, S. E.; Pankiewicz, K. W. J. Med. Chem. 2005, 48, 5504.
8. (a) Murakami, E.; Niu, C.; Bao, H.; Steuer, H. M.; Whitaker, T.; Nachman, T.;
Sofia, M. A.; Wang, P.; Otto, M. J.; Furman, P. A. Antimicrob. Agents Chemother.
2008, 52, 458; (b) Stuyver, L. J.; McBrayer, T. R.; Tharnish, P. M.; Clark, J. L.;
Hollecher, L.; Lostia, S.; Nachman, T.; Grier, J.; Bennett, M. A.; Xie, M.-Y.;
Schinazi, R. F.; Morrey, J. D.; Julander, J. L.; Furman, P. A.; Otto, M. J. Antiviral
Chem. Chemother. 2006, 17, 79.
9. Stuyver, L. J.; McBrayer, T. R.; Whitaker, T.; Tharnish, P. M.; Ramesh, M.; Lostia,
S.; Cartee, L.; Shi, J.; Hobbs, A.; Schinazi, R. F.; Watanabe, K. A.; Otto, M. J.
Antimicrob. Agents Chemother. 2004, 48, 651.
10. Eldrup, A. B.; Allerson, C. R.; Bennett, C. F.; Bera, S.; Bhat, B.; Bhat, N.;
Bosserman, M. R.; Brooks, J.; Burlein, C.; Carroll, S. S.; Cook, P. D.; Getty, K. L.;
MacCross, M.; McMasters, D. R.; Olsen, D. B.; Prakash, T. P.; Prhavc, M.; Song,
Q.; Tomassini, J. E.; Xia, J. J. Med. Chem. 2004, 47, 2283.
11. Pierra, C.; Amador, A.; Benzaria, S.; Cretton-Scott, E.; D’Amours, M.; Mao, J.;
Mathieu, S.; Moussa, A.; Bridges, E. G.; Standring, D. N.; Sommadossi, J.-P.;
Storer, R.; Gosselin, G. J. Med. Chem. 2006, 49, 6614.
12. Klumpp, K.; Kalayanov, G.; Ma, H.; Le Pogam, S.; Leveque, V.; Jiang, W.-R.;
Inocencio, N.; De Witte, A.; Rajyaguru, S.; Tai, E.; Chanda, S.; Irwin, M. R.; Sund,
C.; Winqist, A.; Maltseva, T.; Eriksson, S.; Usova, E.; Smith, M.; Alker, A.; Najera,
I.; Cammack, N.; Martin, J. A.; Johansson, N. G.; Smith, D. B. J. Biol. Chem. 2008,
283, 2167.
13. (a) Smith, D. B.; Martin, J. A.; Klumpp, K.; Baker, S. J.; Blomgren, P. A.; Devos, R.;
Granycome, C.; Hang, J.; Hobbs, C. J.; Jiang, W.-R.; Laxton, C.; Le Pogam, S.;
Leveque, V.; Ma, H.; Maile, G.; Merrett, J. H.; Pichota, A.; Sarma, K.; Smith, M.;
Swallow, S.; Symons, J.; Vesey, D.; Najera, I.; Cammack, N. Bioorg. Med. Chem.
Lett. 2007, 17, 2570; (b) Smith, D. B.; Kalayanov, G.; Sund, C.; Winqvist, A.;
Pinho, P.; Maltseva, T.; Morisson, V.; Leveque, V.; Rajyaguru, S.; Le Pogam, S.;
Najera, I.; Benkestock, K.; Zhou, X.-X.; Maag, H.; Cammack, N.; Martin, J. A.;
Swallow, S.; Johansson, N. G.; Klumpp, K.; Smith, M. J. Med. Chem. 2009, 52,
219; (c) Smith, D. B.; Kalayanov, G.; Sund, C.; Winqvist, A.; Maltseva, T.;
Leveque, V. J.-P.; Rajyaguru, S.; Le Pogam, S.; Najera, I.; Benkestock, K.; Zhou, X.-
X.; Kaiser, A. C.; Maag, H.; Cammack, N.; Martin, J. A.; Swallow, S.; Johansson, N.
G.; Klumpp, K.; Smith, M. J. Med. Chem. 2009, 52, 2971.
bit the HCV NS5B polymerase in vitro with IC50s from 30 to 80 lM
(Table 2). Since these triphosphates inhibited the HCV RdRp, lack of
anti-HCV activity may be due to a problem with the phosphoryla-
tion of the nucleosides to their corresponding triphosphates.
Therefore, the phosphorylation of the 30,40-oxetane nucleosides to
their monophosphates by deoxycytidine kinase (dCK) was evalu-
ated.25 As shown in Table 3, several 30,40-oxetane nucleosides (4,
5, and 6) were determined to be substrates for dCK and showed
similar or better substrate efficiency compared to the known
HCV inhibitor 1.
There are several known human nucleoside monophosphate
kinases including UMP-CMP kinase, thymidylate kinase, adenylate
kinase, and guaniylate kinase. Typically, UMP-CMP kinase is
responsible for phosphorylation of deoxycytidine monophosphate
and its analogs.26 Therefore, the second phosphorylation step
was studied by treating the 30,40-oxetane nucleosides (4, 5, and
6) with both dCK and UMP-CMP kinase and the phosphorylated
products were detected by thin layer chromatography. Significant
amounts of the monophosphate products were formed due to
phosphorylation of the nucleosides by dCK but very little or no
30,40-oxetane nucleoside diphosphate products were detected, indi-
cating that 30,40-oxetane nucleoside monophosphates are not sub-
strates for UMP-CMP kinase (data not shown). Therefore, we can
conclude that the lack of anti-HCV activity of the 30,40-oxetane
nucleosides studied can most likely be attributed to the fact that
their monophosphates are not substrates for the monophosphate
kinases which are required for the biosynthesis of the active tri-
phosphate in the cell.
In summary, we prepared several novel 30,40-oxetane nucleo-
sides and studied their anti-HCV activities. Although these oxetane
containing nucleosides did not show significant anti-HCV activity
in the whole cell replicon assay, representative triphosphate deriv-
atives (4-TP, 5-TP, and 6-TP) were shown to be inhibitors of the
HCV NS5B RdRp with the triphosphate of 4 being the most potent
(IC50 = 31 lM), Even though representative oxetane derivatives are
substrates for the first kinase in the phosphorylation cascade
(dCK), their lack of whole cell replicon activity can be attributed
to the inability of the monophosphate kinases to phosphorylate
the monophosphates of 4, 5, and 6.
14. For a review, see: Meldgaard, M.; Wengel, J. J. Chem. Soc., Perkin Trans. 1 2000,
3539.
15. (a) Lanford, R. E.; Hildebrandt-Eriksen, E. S.; Petri, A.; Persson, R.; Lindow, M.;
Munk, M. E.; Kauppinen, S.; Ørum, H. Science 2010, 327, 198; (b) Stoerling, Z.
M.; Koch, T.. In Wiley Encyclopedia of Chemical Biology; Begley, T. P., Ed.; John
Wiley & Sons, Inc.: Hoboken, 2009; Vol. 2, pp 616–622; (c) Nielsen, P.; Wengel,
J.. In Modified Nucleosides; Herdewijn, P., Ed.; Wiley-VCH: Weinheim, 2008; pp
133–152; (d) Albk, N.; Petersen, M.; Nielsen, P. J. Org. Chem. 2006, 71, 7731; (e)
Honcharenko, D.; Varghese, O. P.; Plashkevych, O.; Barman, J.; Chattopadhyaya,
J. J. Org. Chem. 2006, 71, 299; (f) Bogucka, M.; Naus, P.; Pathmasiri, W.; Barman,
J.; Chattopadhyaya, J. Org. Biomol. Chem. 2005, 4362.
16. (a) Obika, S.; Morio, K.-I.; Nanbu, D.; Imanishi, T. Chem. Commun. 1997, 1643;
(b) Obika, S.; Morio, K.-I.; Hari, Y.; Imanishi, T. Bioorg. Med. Chem. Lett. 1999, 9,
515; (c) Hari, Y.; Obika, S.; Sakaki, M.; Morio, K.-I.; Yamagata, Y.; Imanishi, T.
Tetrahedron 2002, 58, 3051.
Table 2
Inhibition of HCV polymerase (NS5B) activity in vitro
Compound
IC50 (lM)
4-TP
5-TP
6-TP
2, PSI-6130-TP
30.96 4.75
78.91 5.68
32.76 5.36
5.37 0.50
17. (a) Van Daele, I.; Munier-Lehmann, H.; Hendrickx, P. M. S.; Marchal, G.;
Chavarot, P.; Froeyen, M.; Qing, L.; Martins, J. C.; Van Calenbergh, S.
ChemMedChem 2006, 1, 1081; (b) Vanheusden, V.; Munier-Lehmann, H.;
Froeyen, M.; Busson, R.; Rozenski, J.; Herdewijn, P.; Van Calenbergh, S. J. Med.
Chem. 2004, 47, 6187.
Table 3
Steady-state parameters for dCK reactions
18. (a) Hrdlicka, P. J.; Andersen, N. K.; Jepsen, J. S.; Hansen, F. G.; Haselmann, K. F.;
Nielsen, C.; Wengel, J. Bioorg. Med. Chem. 2005, 13, 2597; (b) Chun, M. W.; Kim,
M. J.; Kim, H. O.; Kim, H.-D.; Kim, J. H.; Moon, H. R.; Jeong, L. S. Nucleosides
Nucleotides Nucleic Acids 2003, 22, 915.
19. (a) Procopio, A.; Alcaro, S.; De Nino, A.; Maiuolo, L.; Ortuso, F.; Sindona, G.
Bioorg. Med. Chem. Lett. 2005, 15, 545; (b) Diaz-Rodriguez, A.; Sanghvi, Y. S.;
Fernandez, S.; Schinazi, R. F.; Theodorakis, E. A.; Ferrero, M.; Gotor, V. Org.
Compound
kcat (sꢀ1
)
Km
(
lM)
kcat/Km (l )
Mꢀ1 sꢀ1
4
5
6
0.0214
0.1221
0.0599
0.016
60.95
81.1
27.6
81.2
3.5 ꢁ 10ꢀ4
1.5 ꢁ 10ꢀ3
2.2 ꢁ 10ꢀ3
1.9 ꢁ 10ꢀ4
1, PSI-6130